Извлечь уровни метра из аудиофайла
Мне нужно извлечь уровни аудиометра из файла, чтобы я мог рендерить уровни перед воспроизведением звука. я знаю AVAudioPlayer
может получить эту информацию во время воспроизведения аудио файла через
func averagePower(forChannel channelNumber: Int) -> Float.
Но в моем случае я хотел бы получить [Float]
уровня метров заранее.
3 ответа
Более быстрое решение
Это берет на iPhone 6s плюс:
0,538 с для обработки
8MByte
mp3-плеер с4min47s
продолжительность и44,100
частота выборки0,170 с для обработки
712KByte
mp3-плеер с22s
продолжительность и44,100
частота выборки0.089s для обработки
caf
файл, созданный преобразованием файла выше с помощью этой командыafconvert -f caff -d LEI16 audio.mp3 audio.caf
в терминале.
Давай начнем:
А) Объявите этот класс, который будет содержать необходимую информацию об аудиоустройстве:
/// Holds audio information used for building waveforms
final class AudioContext {
/// The audio asset URL used to load the context
public let audioURL: URL
/// Total number of samples in loaded asset
public let totalSamples: Int
/// Loaded asset
public let asset: AVAsset
// Loaded assetTrack
public let assetTrack: AVAssetTrack
private init(audioURL: URL, totalSamples: Int, asset: AVAsset, assetTrack: AVAssetTrack) {
self.audioURL = audioURL
self.totalSamples = totalSamples
self.asset = asset
self.assetTrack = assetTrack
}
public static func load(fromAudioURL audioURL: URL, completionHandler: @escaping (_ audioContext: AudioContext?) -> ()) {
let asset = AVURLAsset(url: audioURL, options: [AVURLAssetPreferPreciseDurationAndTimingKey: NSNumber(value: true as Bool)])
guard let assetTrack = asset.tracks(withMediaType: AVMediaType.audio).first else {
fatalError("Couldn't load AVAssetTrack")
}
asset.loadValuesAsynchronously(forKeys: ["duration"]) {
var error: NSError?
let status = asset.statusOfValue(forKey: "duration", error: &error)
switch status {
case .loaded:
guard
let formatDescriptions = assetTrack.formatDescriptions as? [CMAudioFormatDescription],
let audioFormatDesc = formatDescriptions.first,
let asbd = CMAudioFormatDescriptionGetStreamBasicDescription(audioFormatDesc)
else { break }
let totalSamples = Int((asbd.pointee.mSampleRate) * Float64(asset.duration.value) / Float64(asset.duration.timescale))
let audioContext = AudioContext(audioURL: audioURL, totalSamples: totalSamples, asset: asset, assetTrack: assetTrack)
completionHandler(audioContext)
return
case .failed, .cancelled, .loading, .unknown:
print("Couldn't load asset: \(error?.localizedDescription ?? "Unknown error")")
}
completionHandler(nil)
}
}
}
Мы собираемся использовать его асинхронную функцию load
и обработать его результат обработчику завершения.
Б) Импорт AVFoundation
а также Accelerate
на ваш взгляд контроллер:
import AVFoundation
import Accelerate
C) Объявите уровень шума в вашем контроллере вида (в дБ):
let noiseFloor: Float = -80
Например, что-нибудь меньше, чем -80dB
будет считаться тишиной.
D) Следующая функция берет аудиоконтент и выдает желаемую мощность в дБ. targetSamples
по умолчанию установлено значение 100, вы можете изменить это в соответствии с потребностями вашего интерфейса:
func render(audioContext: AudioContext?, targetSamples: Int = 100) -> [Float]{
guard let audioContext = audioContext else {
fatalError("Couldn't create the audioContext")
}
let sampleRange: CountableRange<Int> = 0..<audioContext.totalSamples/3
guard let reader = try? AVAssetReader(asset: audioContext.asset)
else {
fatalError("Couldn't initialize the AVAssetReader")
}
reader.timeRange = CMTimeRange(start: CMTime(value: Int64(sampleRange.lowerBound), timescale: audioContext.asset.duration.timescale),
duration: CMTime(value: Int64(sampleRange.count), timescale: audioContext.asset.duration.timescale))
let outputSettingsDict: [String : Any] = [
AVFormatIDKey: Int(kAudioFormatLinearPCM),
AVLinearPCMBitDepthKey: 16,
AVLinearPCMIsBigEndianKey: false,
AVLinearPCMIsFloatKey: false,
AVLinearPCMIsNonInterleaved: false
]
let readerOutput = AVAssetReaderTrackOutput(track: audioContext.assetTrack,
outputSettings: outputSettingsDict)
readerOutput.alwaysCopiesSampleData = false
reader.add(readerOutput)
var channelCount = 1
let formatDescriptions = audioContext.assetTrack.formatDescriptions as! [CMAudioFormatDescription]
for item in formatDescriptions {
guard let fmtDesc = CMAudioFormatDescriptionGetStreamBasicDescription(item) else {
fatalError("Couldn't get the format description")
}
channelCount = Int(fmtDesc.pointee.mChannelsPerFrame)
}
let samplesPerPixel = max(1, channelCount * sampleRange.count / targetSamples)
let filter = [Float](repeating: 1.0 / Float(samplesPerPixel), count: samplesPerPixel)
var outputSamples = [Float]()
var sampleBuffer = Data()
// 16-bit samples
reader.startReading()
defer { reader.cancelReading() }
while reader.status == .reading {
guard let readSampleBuffer = readerOutput.copyNextSampleBuffer(),
let readBuffer = CMSampleBufferGetDataBuffer(readSampleBuffer) else {
break
}
// Append audio sample buffer into our current sample buffer
var readBufferLength = 0
var readBufferPointer: UnsafeMutablePointer<Int8>?
CMBlockBufferGetDataPointer(readBuffer, 0, &readBufferLength, nil, &readBufferPointer)
sampleBuffer.append(UnsafeBufferPointer(start: readBufferPointer, count: readBufferLength))
CMSampleBufferInvalidate(readSampleBuffer)
let totalSamples = sampleBuffer.count / MemoryLayout<Int16>.size
let downSampledLength = totalSamples / samplesPerPixel
let samplesToProcess = downSampledLength * samplesPerPixel
guard samplesToProcess > 0 else { continue }
processSamples(fromData: &sampleBuffer,
outputSamples: &outputSamples,
samplesToProcess: samplesToProcess,
downSampledLength: downSampledLength,
samplesPerPixel: samplesPerPixel,
filter: filter)
//print("Status: \(reader.status)")
}
// Process the remaining samples at the end which didn't fit into samplesPerPixel
let samplesToProcess = sampleBuffer.count / MemoryLayout<Int16>.size
if samplesToProcess > 0 {
let downSampledLength = 1
let samplesPerPixel = samplesToProcess
let filter = [Float](repeating: 1.0 / Float(samplesPerPixel), count: samplesPerPixel)
processSamples(fromData: &sampleBuffer,
outputSamples: &outputSamples,
samplesToProcess: samplesToProcess,
downSampledLength: downSampledLength,
samplesPerPixel: samplesPerPixel,
filter: filter)
//print("Status: \(reader.status)")
}
// if (reader.status == AVAssetReaderStatusFailed || reader.status == AVAssetReaderStatusUnknown)
guard reader.status == .completed || true else {
fatalError("Couldn't read the audio file")
}
return outputSamples
}
E) render
использует эту функцию, чтобы преобразовать данные из аудиофайла и преобразовать их в децибелы:
func processSamples(fromData sampleBuffer: inout Data,
outputSamples: inout [Float],
samplesToProcess: Int,
downSampledLength: Int,
samplesPerPixel: Int,
filter: [Float]) {
sampleBuffer.withUnsafeBytes { (samples: UnsafePointer<Int16>) in
var processingBuffer = [Float](repeating: 0.0, count: samplesToProcess)
let sampleCount = vDSP_Length(samplesToProcess)
//Convert 16bit int samples to floats
vDSP_vflt16(samples, 1, &processingBuffer, 1, sampleCount)
//Take the absolute values to get amplitude
vDSP_vabs(processingBuffer, 1, &processingBuffer, 1, sampleCount)
//get the corresponding dB, and clip the results
getdB(from: &processingBuffer)
//Downsample and average
var downSampledData = [Float](repeating: 0.0, count: downSampledLength)
vDSP_desamp(processingBuffer,
vDSP_Stride(samplesPerPixel),
filter, &downSampledData,
vDSP_Length(downSampledLength),
vDSP_Length(samplesPerPixel))
//Remove processed samples
sampleBuffer.removeFirst(samplesToProcess * MemoryLayout<Int16>.size)
outputSamples += downSampledData
}
}
F) которая, в свою очередь, вызывает эту функцию, которая получает соответствующий дБ и обрезает результаты [noiseFloor, 0]
:
func getdB(from normalizedSamples: inout [Float]) {
// Convert samples to a log scale
var zero: Float = 32768.0
vDSP_vdbcon(normalizedSamples, 1, &zero, &normalizedSamples, 1, vDSP_Length(normalizedSamples.count), 1)
//Clip to [noiseFloor, 0]
var ceil: Float = 0.0
var noiseFloorMutable = noiseFloor
vDSP_vclip(normalizedSamples, 1, &noiseFloorMutable, &ceil, &normalizedSamples, 1, vDSP_Length(normalizedSamples.count))
}
G) Наконец, вы можете получить звуковую форму звука следующим образом:
guard let path = Bundle.main.path(forResource: "audio", ofType:"mp3") else {
fatalError("Couldn't find the file path")
}
let url = URL(fileURLWithPath: path)
var outputArray : [Float] = []
AudioContext.load(fromAudioURL: url, completionHandler: { audioContext in
guard let audioContext = audioContext else {
fatalError("Couldn't create the audioContext")
}
outputArray = self.render(audioContext: audioContext, targetSamples: 300)
})
Не забывай это AudioContext.load(fromAudioURL:)
асинхронный
Это решение синтезировано из этого репо Уильямом Энтрикеном. Вся заслуга ему.
Старое решение
Вот функция, которую вы можете использовать для предварительного рендеринга уровней метра аудиофайла без его воспроизведения:
func averagePowers(audioFileURL: URL, forChannel channelNumber: Int, completionHandler: @escaping(_ success: [Float]) -> ()) {
let audioFile = try! AVAudioFile(forReading: audioFileURL)
let audioFilePFormat = audioFile.processingFormat
let audioFileLength = audioFile.length
//Set the size of frames to read from the audio file, you can adjust this to your liking
let frameSizeToRead = Int(audioFilePFormat.sampleRate/20)
//This is to how many frames/portions we're going to divide the audio file
let numberOfFrames = Int(audioFileLength)/frameSizeToRead
//Create a pcm buffer the size of a frame
guard let audioBuffer = AVAudioPCMBuffer(pcmFormat: audioFilePFormat, frameCapacity: AVAudioFrameCount(frameSizeToRead)) else {
fatalError("Couldn't create the audio buffer")
}
//Do the calculations in a background thread, if you don't want to block the main thread for larger audio files
DispatchQueue.global(qos: .userInitiated).async {
//This is the array to be returned
var returnArray : [Float] = [Float]()
//We're going to read the audio file, frame by frame
for i in 0..<numberOfFrames {
//Change the position from which we are reading the audio file, since each frame starts from a different position in the audio file
audioFile.framePosition = AVAudioFramePosition(i * frameSizeToRead)
//Read the frame from the audio file
try! audioFile.read(into: audioBuffer, frameCount: AVAudioFrameCount(frameSizeToRead))
//Get the data from the chosen channel
let channelData = audioBuffer.floatChannelData![channelNumber]
//This is the array of floats
let arr = Array(UnsafeBufferPointer(start:channelData, count: frameSizeToRead))
//Calculate the mean value of the absolute values
let meanValue = arr.reduce(0, {$0 + abs($1)})/Float(arr.count)
//Calculate the dB power (You can adjust this), if average is less than 0.000_000_01 we limit it to -160.0
let dbPower: Float = meanValue > 0.000_000_01 ? 20 * log10(meanValue) : -160.0
//append the db power in the current frame to the returnArray
returnArray.append(dbPower)
}
//Return the dBPowers
completionHandler(returnArray)
}
}
И вы можете назвать это так:
let path = Bundle.main.path(forResource: "audio.mp3", ofType:nil)!
let url = URL(fileURLWithPath: path)
averagePowers(audioFileURL: url, forChannel: 0, completionHandler: { array in
//Use the array
})
При использовании инструментов это решение обеспечивает высокую загрузку процессора в течение 1,2 секунды, для возврата к основному потоку с помощью returnArray
и до 10 секунд в режиме низкого заряда батареи.
Прежде всего, это тяжелая операция, поэтому для этого потребуется некоторое время и ресурсы ОС. В приведенном ниже примере я буду использовать стандартные частоты кадров и сэмплирование, но вам действительно нужно гораздо меньше сэмплировать, если вы, например, хотите отображать столбцы только как индикаторы.
Итак, вам не нужно воспроизводить звук, чтобы проанализировать его. Так что в этом я не буду использовать AVAudioPlayer
вообще я предполагаю, что я буду отслеживать как URL
:
let path = Bundle.main.path(forResource: "example3.mp3", ofType:nil)!
let url = URL(fileURLWithPath: path)
Затем я буду использовать AVAudioFile для получения информации о треках в AVAudioPCMBuffer. Всякий раз, когда у вас есть это в буфере, у вас есть вся информация относительно вашего трека:
func buffer(url: URL) {
do {
let track = try AVAudioFile(forReading: url)
let format = AVAudioFormat(commonFormat:.pcmFormatFloat32, sampleRate:track.fileFormat.sampleRate, channels: track.fileFormat.channelCount, interleaved: false)
let buffer = AVAudioPCMBuffer(pcmFormat: format!, frameCapacity: UInt32(track.length))!
try track.read(into : buffer, frameCount:UInt32(track.length))
self.analyze(buffer: buffer)
} catch {
print(error)
}
}
Как вы можете заметить, есть analyze
метод для этого. В вашем буфере должна быть близка переменная floatChannelData. Это простые данные, поэтому вам нужно их проанализировать. Я опубликую метод и ниже объясню это:
func analyze(buffer: AVAudioPCMBuffer) {
let channelCount = Int(buffer.format.channelCount)
let frameLength = Int(buffer.frameLength)
var result = Array(repeating: [Float](repeatElement(0, count: frameLength)), count: channelCount)
for channel in 0..<channelCount {
for sampleIndex in 0..<frameLength {
let sqrtV = sqrt(buffer.floatChannelData![channel][sampleIndex*buffer.stride]/Float(buffer.frameLength))
let dbPower = 20 * log10(sqrtV)
result[channel][sampleIndex] = dbPower
}
}
}
Есть некоторые расчеты (тяжелый), участвующих в этом. Когда я работал над аналогичными решениями пару месяцев назад, я наткнулся на этот учебник: https://www.raywenderlich.com/5154-avaudioengine-tutorial-for-ios-getting-started там есть отличное объяснение этого расчета, а также части кода, которые я вставил выше и которые также используются в моем проекте, поэтому я хочу отметить автора здесь: Скотт МакАлистер
Основываясь на ответе @Jakub выше, вот версия Objective-C.
Если вы хотите повысить точность, измените
deciblesCount
переменная, но остерегайтесь снижения производительности. Если вы хотите вернуть больше столбцов, вы можете увеличить
divisions
переменная при вызове функции (без дополнительного снижения производительности). В любом случае вам, вероятно, следует поместить его в фоновый поток.
Песня 3:36 минут / 5,2 МБ занимает около 1,2 секунды. Вышеупомянутые изображения показывают стрельбу из дробовика 30 и 100 дивизий соответственно.
-(NSArray *)returnWaveArrayForFile:(NSString *)filepath numberOfDivisions:(int)divisions{
//pull file
NSError * error;
NSURL * url = [NSURL URLWithString:filepath];
AVAudioFile * file = [[AVAudioFile alloc] initForReading:url error:&error];
//create av stuff
AVAudioFormat * format = [[AVAudioFormat alloc] initWithCommonFormat:AVAudioPCMFormatFloat32 sampleRate:file.fileFormat.sampleRate channels:file.fileFormat.channelCount interleaved:false];
AVAudioPCMBuffer * buffer = [[AVAudioPCMBuffer alloc] initWithPCMFormat:format frameCapacity:(int)file.length];
[file readIntoBuffer:buffer frameCount:(int)file.length error:&error];
//grab total number of decibles, 1000 seems to work
int deciblesCount = MIN(1000,buffer.frameLength);
NSMutableArray * channels = [NSMutableArray new];
float frameIncrement = buffer.frameLength / (float)deciblesCount;
//needed later
float maxDecible = 0;
float minDecible = HUGE_VALF;
NSMutableArray * sd = [NSMutableArray new]; //used for standard deviation
for (int n = 0; n < MIN(buffer.format.channelCount, 2); n++){ //go through channels
NSMutableArray * decibles = [NSMutableArray new]; //holds actual decible values
//go through pulling the decibles
for (int i = 0; i < deciblesCount; i++){
int offset = frameIncrement * i; //grab offset
//equation from stack, no idea the maths
float sqr = sqrtf(buffer.floatChannelData[n][offset * buffer.stride]/(float)buffer.frameLength);
float decible = 20 * log10f(sqr);
decible += 160; //make positive
decible = (isnan(decible) || decible < 0) ? 0 : decible; //if it's not a number or silent, make it zero
if (decible > 0){ //if it has volume
[sd addObject:@(decible)];
}
[decibles addObject:@(decible)];//add to decibles array
maxDecible = MAX(maxDecible, decible); //grab biggest
minDecible = MIN(minDecible, decible); //grab smallest
}
[channels addObject:decibles]; //add to channels array
}
//find standard deviation and then deducted the bottom slag
NSExpression * expression = [NSExpression expressionForFunction:@"stddev:" arguments:@[[NSExpression expressionForConstantValue:sd]]];
float standardDeviation = [[expression expressionValueWithObject:nil context:nil] floatValue];
float deviationDeduct = standardDeviation / (standardDeviation + (maxDecible - minDecible));
//go through calculating deviation percentage
NSMutableArray * deviations = [NSMutableArray new];
NSMutableArray * returning = [NSMutableArray new];
for (int c = 0; c < (int)channels.count; c++){
NSArray * channel = channels[c];
for (int n = 0; n < (int)channel.count; n++){
float decible = [channel[n] floatValue];
float remainder = (maxDecible - decible);
float deviation = standardDeviation / (standardDeviation + remainder) - deviationDeduct;
[deviations addObject:@(deviation)];
}
//go through creating percentage
float maxTotal = 0;
int catchCount = floorf(deciblesCount / divisions); //total decible values within a segment or division
NSMutableArray * totals = [NSMutableArray new];
for (int n = 0; n < divisions; n++){
float total = 0.0f;
for (int k = 0; k < catchCount; k++){ //go through each segment
int index = n * catchCount + k; //create the index
float deviation = [deviations[index] floatValue]; //grab value
total += deviation; //add to total
}
//max out maxTotal var -> used later to calc percentages
maxTotal = MAX(maxTotal, total);
[totals addObject:@(total)]; //add to totals array
}
//normalise percentages and return
NSMutableArray * percentages = [NSMutableArray new];
for (int n = 0; n < divisions; n++){
float total = [totals[n] floatValue]; //grab the total value for that segment
float percentage = total / maxTotal; //divide by the biggest value -> making it a percentage
[percentages addObject:@(percentage)]; //add to the array
}
//add to the returning array
[returning addObject:percentages];
}
//return channel data -> array of two arrays of percentages
return (NSArray *)returning;
}
Звоните так:
int divisions = 30; //number of segments you want for your display
NSString * path = [[NSBundle mainBundle] pathForResource:@"satie" ofType:@"mp3"];
NSArray * channels = [_audioReader returnWaveArrayForFile:path numberOfDivisions:divisions];
Вы получаете два канала обратно в этот массив, который можно использовать для обновления пользовательского интерфейса. Значения в каждом массиве находятся в диапазоне от 0 до 1, которые вы можете использовать для построения своих столбцов.