Как я могу использовать "режим тройного чередования" в stm32f446?
Я хочу достичь высокой частоты дискретизации в stm32f446, поэтому я обнаружил, что могу утроить частоту дискретизации, используя "режим тройного чередования" и DMA. Я подумал, что могу сделать это легко, определив каждый из ADC1, ADC2 и ADC3 как режим непрерывного преобразования с памятью прямого доступа, но он не работает. я на правильном пути?
Я использую trueStudio и STM32CubeMX
#include "main.h"
#include "stm32f4xx_hal.h"
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
ADC_HandleTypeDef hadc3;
DMA_HandleTypeDef hdma_adc1;
DMA_HandleTypeDef hdma_adc2;
DMA_HandleTypeDef hdma_adc3;
UART_HandleTypeDef huart2;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_ADC3_Init(void);
static void MX_ADC2_Init(void);
uint32_t adc_value1[333], adc_value2[333], adc_value3[333], adc_val1[333], adc_val2[333], adc_val3[333], adc_buf1[333], adc_buf2[333], adc_buf3[333];
char message1[];
char message2[];
char message3[];
char schar[]="<";
char echar[]=">";
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc){
for(int i = 0; i<333; i++){
adc_val1[i] = adc_buf1[i];
adc_val2[i] = adc_buf2[i];
adc_val3[i] = adc_buf3[i];
}
}
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
MX_USART2_UART_Init();
MX_ADC3_Init();
MX_ADC2_Init();
HAL_ADCEx_MultiModeStart_DMA(&hadc1, (uint32_t *)adc_buf1, 333);
HAL_ADCEx_MultiModeStart_DMA(&hadc2, (uint32_t *)adc_buf2, 333);
HAL_ADCEx_MultiModeStart_DMA(&hadc3, (uint32_t *)adc_buf3, 333);
while (1)
{
for(int i=0; i<333; i++){
adc_value1[i] = adc_val1[i];
adc_value2[i] = adc_val2[i];
adc_value3[i] = adc_val3[i];
}
// transmit data through UART to arduino
for(int j=0; j<333; j++){
//adc_value[j] = adc_val[j];
sprintf(message1, "%d", adc_value1[j]);
sprintf(message2, "%d", adc_value2[j]);
sprintf(message3, "%d", adc_value3[j]);
HAL_UART_Transmit(&huart2, (uint8_t*)schar, 1, 10);
HAL_UART_Transmit(&huart2, (uint16_t*)message1, strlen(message1), 10);
HAL_UART_Transmit(&huart2, (uint16_t*)message2, strlen(message2), 10);
HAL_UART_Transmit(&huart2, (uint16_t*)message3, strlen(message3), 10);
HAL_UART_Transmit(&huart2, (uint8_t*)echar, 1, 10);
HAL_Delay(50);
}
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 144;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 2;
RCC_OscInitStruct.PLL.PLLR = 2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
static void MX_ADC1_Init(void)
{
ADC_MultiModeTypeDef multimode;
ADC_ChannelConfTypeDef sConfig;
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = ENABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 4;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
multimode.Mode = ADC_TRIPLEMODE_INTERL;
multimode.DMAAccessMode = ADC_DMAACCESSMODE_2;
multimode.TwoSamplingDelay = ADC_TWOSAMPLINGDELAY_6CYCLES;
if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
static void MX_ADC2_Init(void)
{
ADC_ChannelConfTypeDef sConfig;
hadc2.Instance = ADC2;
hadc2.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc2.Init.Resolution = ADC_RESOLUTION_12B;
hadc2.Init.ScanConvMode = ENABLE;
hadc2.Init.ContinuousConvMode = ENABLE;
hadc2.Init.DiscontinuousConvMode = DISABLE;
hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc2.Init.NbrOfConversion = 4;
hadc2.Init.DMAContinuousRequests = ENABLE;
hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sConfig.Channel = ADC_CHANNEL_6;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
static void MX_ADC3_Init(void)
{
ADC_ChannelConfTypeDef sConfig;
hadc3.Instance = ADC3;
hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc3.Init.Resolution = ADC_RESOLUTION_12B;
hadc3.Init.ScanConvMode = ENABLE;
hadc3.Init.ContinuousConvMode = ENABLE;
hadc3.Init.DiscontinuousConvMode = DISABLE;
hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc3.Init.NbrOfConversion = 4;
hadc3.Init.DMAContinuousRequests = ENABLE;
hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc3) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sConfig.Channel = ADC_CHANNEL_10;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
static void MX_DMA_Init(void)
{
__HAL_RCC_DMA2_CLK_ENABLE();
HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
HAL_NVIC_SetPriority(DMA2_Stream1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream1_IRQn);
HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn);
}
static void MX_GPIO_Init(void)
{
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
}
void _Error_Handler(char *file, int line)
{
while(1)
{
}
}
#ifdef USE_FULL_ASSERT
void assert_failed(uint8_t* file, uint32_t line)
{
}
#endif