OpenMDAO как установить свойства подгруппы?
Обычно, когда я использую свою группу оптимизации, я включаю ее в задачу. Затем я могу установить его свойства компонента:
# import modules, prepare data for Problem setup
...
# Initialize problem with my group
prob = Problem(impl=impl, root=AEPGroup(nTurbines=10,
nDirections=5,
minSpacing=2))
# Configure driver, desvars, and constraints
prob.driver = pyOptSparseDriver()
prob.driver.add_desvar('turbineX', lower=np.ones(nTurbs)*min(turbineX), upper=np.ones(nTurbs)*max(turbineX), scaler=1E-2)
prob.driver.add_objective('obj', scaler=1E-8)
# run setup()
prob.setup(check=True)
# Now I set several specifications
prob['turbineX'] = turbineX
....
Пожалуйста, смотрите мой пример ниже (адаптировано из test_brute_force.py
). В строке 204 я хочу бежать AEPGroup
как группа внутри другой группы. Есть ли аналогичный способ настройки таких характеристик, как turbineX
в подгруппе?
from __future__ import print_function
from florisse.floris import AEPGroup
import unittest
from florisse.GeneralWindFarmComponents import calculate_boundary
from six.moves import range
from six import iteritems
import numpy as np
from openmdao.api import Problem, Group, ParallelGroup, \
Component, IndepVarComp, ExecComp, \
Driver, ScipyOptimizer, SqliteRecorder
from openmdao.test.sellar import *
from openmdao.test.util import assert_rel_error
from openmdao.core.mpi_wrap import MPI
if MPI:
from openmdao.core.petsc_impl import PetscImpl as impl
else:
from openmdao.api import BasicImpl as impl
# load wind rose data
windRose = np.loadtxt('./input_files/windrose_amalia_directionally_averaged_speeds.txt')
indexes = np.where(windRose[:, 1] > 0.1)
#print ("ypppp indexes are ", indexes)
indexes = [[8]]
#print ("ypppp indexes are ", indexes) ; quit()
windDirections = windRose[indexes[0], 0]
windSpeeds = windRose[indexes[0], 1]
windFrequencies = windRose[indexes[0], 2]
nDirections = len(windDirections)
# load turbine positions
locations = np.loadtxt('./input_files/layout_amalia.txt')
turbineX = locations[:, 0]
turbineY = locations[:, 1]
# generate boundary constraint
boundaryVertices, boundaryNormals = calculate_boundary(locations)
nVertices = boundaryVertices.shape[0]
# define turbine size
rotor_diameter = 126.4 # (m)
# initialize input variable arrays
nTurbines = turbineX.size
rotorDiameter = np.zeros(nTurbines)
axialInduction = np.zeros(nTurbines)
Ct = np.zeros(nTurbines)
Cp = np.zeros(nTurbines)
generatorEfficiency = np.zeros(nTurbines)
yaw = np.zeros(nTurbines)
minSpacing = 2. # number of rotor diameters
# define initial values
for turbI in range(0, nTurbines):
rotorDiameter[turbI] = rotor_diameter # m
axialInduction[turbI] = 1.0/3.0
Ct[turbI] = 4.0*axialInduction[turbI]*(1.0-axialInduction[turbI])
Cp[turbI] = 0.7737/0.944 * 4.0 * 1.0/3.0 * np.power((1 - 1.0/3.0), 2)
generatorEfficiency[turbI] = 0.944
yaw[turbI] = 0. # deg.
# Define flow properties
air_density = 1.1716 # kg/m^3
class Randomize(Component):
""" add random uncertainty to params and distribute
Args
----
n : number of points to generate for each param
params : collection of (name, value, std_dev) specifying the params
that are to be randommized.
"""
def __init__(self, n=0, params=[]):
super(Randomize, self).__init__()
self.dists = {}
for name, value, std_dev in params:
# add param
self.add_param(name, val=value)
# add an output array var to distribute the modified param values
if isinstance(value, np.ndarray):
shape = (n, value.size)
else:
shape = (n, 1)
# generate a standard normal distribution (size n) for this param
self.dists[name] = np.random.normal(0.0, std_dev, n*shape[1]).reshape(shape)
#self.dists[name] = std_dev*np.random.normal(0.0, 1.0, n*shape[1]).reshape(shape)
self.add_output('dist_'+name, val=np.zeros(shape))
def solve_nonlinear(self, params, unknowns, resids):
""" add random uncertainty to params
"""
for name, dist in iteritems(self.dists):
unknowns['dist_'+name] = params[name] + dist
def linearize(self, params, unknowns, resids):
""" derivatives
"""
J = {}
for u in unknowns:
name = u.split('_', 1)[1]
for p in params:
shape = (unknowns[u].size, params[p].size)
if p == name:
J[u, p] = np.eye(shape[0], shape[1])
else:
J[u, p] = np.zeros(shape)
return J
class Collector(Component):
""" collect the inputs and compute the mean of each
Args
----
n : number of points to collect for each input
names : collection of `Str` specifying the names of the inputs to
collect and the resulting outputs.
"""
def __init__(self, n=10, names=[]):
super(Collector, self).__init__()
self.names = names
# create n params for each input
for i in range(n):
for name in names:
self.add_param('%s_%i' % (name, i), val=0.)
# create an output for the mean of each input
for name in names:
self.add_output(name, val=0.)
def solve_nonlinear(self, params, unknowns, resids):
""" compute the mean of each input
"""
inputs = {}
for p in params:
name = p.split('_', 1)[0]
if name not in inputs:
inputs[name] = data = [0.0, 0.0]
else:
data = inputs[name]
data[0] += 1
data[1] += params[p]
for name in self.names:
unknowns[name] = inputs[name][1]/inputs[name][0]
def linearize(self, params, unknowns, resids):
""" derivatives
"""
J = {}
for p in params:
name, idx = p.split('_', 1)
for u in unknowns:
if u == name:
J[u, p] = 1
else:
J[u, p] = 0
return J
class BruteForceSellarProblem(Problem):
""" Performs optimization on the AEP problem.
Applies a normal distribution to the design vars and runs all of the
samples, then collects the values of all of the outputs, calculates
the mean of those and stuffs that back into the unknowns vector.
This is the brute force version that just stamps out N separate
AEP models in a parallel group and sets the input of each
one to be one of these random design vars.
Args
----
n : number of randomized points to generate for each input value
derivs : if True, use user-defined derivatives, else use Finite Difference
"""
def __init__(self, n=10, derivs=False):
super(BruteForceSellarProblem, self).__init__(impl=impl)
root = self.root = Group()
if not derivs:
root.deriv_options['type'] = 'fd'
sellars = root.add('sellars', ParallelGroup())
for i in range(n):
name = 'sellar%i' % i
sellars.add(name, AEPGroup(nTurbines=nTurbines, nDirections=nDirections,
differentiable=True,
use_rotor_components=False))
#sellars.add(name, SellarDerivatives())
root.connect('dist_air_density', 'sellars.'+name+'.air_density', src_indices=[i])
#root.connect('yaw0', 'sellars.'+name+'.yaw0')#, src_indices=[i])
#root.connect('dist_z', 'sellars.'+name+'.z', src_indices=[i*2, i*2+1])
root.connect('sellars.'+name+'.AEP', 'collect.obj_%i' % i)
#root.connect('sellars.'+name+'.con1', 'collect.con1_%i' % i)
#root.connect('sellars.'+name+'.con2', 'collect.con2_%i' % i)
root.add('indep', IndepVarComp([
('air_density', 1.0),
('z', np.array([5.0, 2.0]))
]),
promotes=['air_density', 'z'])
root.add('random', Randomize(n=n, params=[
# name, value, std dev
('air_density', 1.0, 1e-2),
('z', np.array([5.0, 2.0]), 1e-2)
]),
promotes=['z', 'dist_air_density', 'dist_z'])
#promotes=['x', 'z', 'dist_x', 'dist_z'])
root.add('collect', Collector(n=n, names=['obj', 'con1', 'con2']),
promotes=['obj', 'con1', 'con2'])
# top level driver setup
self.driver = ScipyOptimizer()
self.driver.options['optimizer'] = 'SLSQP'
self.driver.options['tol'] = 1.0e-8
self.driver.options['maxiter'] = 50
self.driver.options['disp'] = False
self.driver.add_desvar('z', lower=np.array([-10.0, 0.0]),
upper=np.array([ 10.0, 10.0]))
#self.driver.add_desvar('x', lower=0.0, upper=10.0)
self.driver.add_objective('obj')
self.driver.add_constraint('con1', upper=0.0)
self.driver.add_constraint('con2', upper=0.0)
prob = BruteForceSellarProblem(100, derivs=False)
prob.setup(check=False)
prob.run()
print (prob["obj"])
1 ответ
Решение
Так как вы не делаете никакой переменной продвижения, когда вы звоните
sellars.add(name, AEPGroup(nTurbines=nTurbines, nDirections=nDirections,
differentiable=True,
use_rotor_components=False))
Вы можете просто установить имена переменных как
prob['sellars.sellar0.turbineX'] = turbineX
Вы просто настраиваете свой путь к переменной для учета наличия дополнительной родительской группы и того факта, что ваш AEPGroup
сейчас назван sellar0
(или любой другой индекс, который вам нужно установить).