Индексы фрагментов Pybrain должны быть целыми или None или иметь метод __index__ с numpy 1.11.0
Я следую учебному пособию по Evolino для PyBrain и перехожу к этой ошибке (индексы срезов должны быть целыми числами или None или иметь метод индекса) Я погуглил эту ошибку и обнаружил, что есть некоторые проблемы совместимости между PyBrain и Numpy выше версии 1.12. Я понизил Numpy до версии 1.11.0, но проблема все еще сохраняется
Traceback (most recent call last):
File "/home/TA/neural_network.py", line 70, in <module>
trainer.trainEpochs(1)
File "/usr/local/lib/python2.7/dist-packages/pybrain/supervised/trainers/trainer.py", line 37, in trainEpochs
self.train(*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/pybrain/supervised/trainers/evolino.py", line 130, in train
filter.apply(self._population)
File "/usr/local/lib/python2.7/dist-packages/pybrain/supervised/evolino/filter.py", line 115, in apply
fitness = self._evaluateNet(net, dataset, self.wtRatio)
File "/usr/local/lib/python2.7/dist-packages/pybrain/supervised/evolino/filter.py", line 57, in _evaluateNet
sequence = dataset.getSequence(i)[1]
File "/usr/local/lib/python2.7/dist-packages/pybrain/datasets/sequential.py", line 55, in getSequence
return [self._getSequenceField(index, l) for l in self.link]
File "/usr/local/lib/python2.7/dist-packages/pybrain/datasets/sequential.py", line 44, in _getSequenceField
return self.getField(field)[ravel(self.getField('sequence_index'))[index]:]
TypeError: slice indices must be integers or None or have an __index__ method
Process finished with exit code 1
код:
from pylab import plot, show, ion, cla, subplot, title, figlegend, draw
import numpy
from pybrain.structure.modules.evolinonetwork import EvolinoNetwork
from pybrain.supervised.trainers.evolino import EvolinoTrainer
from sin_generator import generateSuperimposedSineData
print()
print("=== Learning to extrapolate 5 superimposed sine waves ===")
print()
sinefreqs = (0.2, 0.311, 0.42, 0.51, 0.74)
metascale = 8.
scale = 0.5 * metascale
stepsize = 0.1 * metascale
# === create training dataset
# the sequences must be stored in the target field
# the input field will be ignored
print ("creating training data")
trnInputSpace = numpy.arange(0*scale, 540*scale, stepsize)
trnData = generateSuperimposedSineData(sinefreqs, trnInputSpace)
# === create testing dataset
print("creating test data")
tstInputSpace = numpy.arange(400*scale, 540*scale, stepsize)
tstData = generateSuperimposedSineData(sinefreqs, tstInputSpace)
# === create the evolino-network
print("creating EvolinoNetwork")
net = EvolinoNetwork(trnData.outdim, 40)
wtRatio = 1./3
# === init an evolino trainer
# it will train network through evolutionary algorithms
print("creating EvolinoTrainer")
trainer = EvolinoTrainer(
net,
dataset=trnData,
subPopulationSize = 20,
nParents = 8,
nCombinations = 1,
initialWeightRange = (-0.01, 0.01),
backprojectionFactor = 0.001,
mutationAlpha = 0.001,
nBurstMutationEpochs = numpy.Infinity,
wtRatio = wtRatio,
verbosity = 2
)
# === prepare sequences for extrapolation and plotting
trnSequence = trnData.getField('target')
seperatorIdx = int(len(trnSequence)*wtRatio)
trnSequenceWashout = trnSequence[0:seperatorIdx]
trnSequenceTarget = trnSequence[seperatorIdx:]
tstSequence = tstData.getField('target')
seperatorIdx = int(len(tstSequence)*wtRatio)
tstSequenceWashout = tstSequence[0:seperatorIdx]
tstSequenceTarget = tstSequence[seperatorIdx:]
ion() #switch matplotlib to interactive mode
for i in range(3000):
print("======================")
print("====== NEXT RUN ======")
print("======================")
print("=== TRAINING")
#train the network for 1 epoch
trainer.trainEpochs(1)
print("=== PLOTTING\n")
#calculate the nets output for train and test data
trnSequenceOutput = net.extrapolate(trnSequenceWashout, len(trnSequenceTarget))
tstSequenceOutput = net.extrapolate(tstSequenceWashout, len(tstSequenceTarget))
#plot training data
sp = subplot(211) #switch to the first subplot
cla() #clear the subplot
title("Training Set") #set the subplot's title
sp.set_autoscale_on(True) #enable autoscaling
targetline = plot(trnSequenceTarget, "r-") #plot the targets
sp.set_autoscale_on(False) #disable autoscaling
outputline = plot(trnSequenceOutput, "b-") #plot the actual ouput
#plot test data
sp = subplot(212)
cla()
title("Test Set")
sp.set_autoscale_on(True)
plot(tstSequenceTarget, "r-")
sp.set_autoscale_on(False)
plot(tstSequenceOutput, "b-")
#create a legend
figlegend((targetline, outputline), ('target', 'output'), ('upper right'))
#draw everything
draw()
show()
ценность:
ravel(self.getField('sequence_index'))[index]
0.0