Pandas DataFrame: как группировать последовательные значения

У меня есть столбец в DataFrame со значениями:

[1, 1, -1, 1, -1, -1]

Как я могу сгруппировать их так?

[1,1] [-1] [1] [-1, -1]

4 ответа

Решение

Ты можешь использовать groupby по обычаю Series:

df = pd.DataFrame({'a': [1, 1, -1, 1, -1, -1]})
print (df)
   a
0  1
1  1
2 -1
3  1
4 -1
5 -1

print ((df.a != df.a.shift()).cumsum())
0    1
1    1
2    2
3    3
4    4
5    4
Name: a, dtype: int32
for i, g in df.groupby([(df.a != df.a.shift()).cumsum()]):
    print (i)
    print (g)
    print (g.a.tolist())

   a
0  1
1  1
[1, 1]
2
   a
2 -1
[-1]
3
   a
3  1
[1]
4
   a
4 -1
5 -1
[-1, -1]

С помощью groupby от itertools данные из Jez

from itertools import groupby
[ list(group) for key, group in groupby(df.a.values.tolist())]
Out[361]: [[1, 1], [-1], [1], [-1, -1]]

Series.diff - еще один способ обозначить границы группы ( a!=a.shift означает a.diff!=0):

      consecutives = df.a.diff().ne(0).cumsum()

# 0    1
# 1    1
# 2    2
# 3    3
# 4    4
# 5    4
# Name: a, dtype: int64

И если вам нужна серия списков (см. Другие ответы для списка списков), а затем объедините с groupby.agg или groupby.apply:

      df.a.groupby(consecutives).agg(list)

# a
# 1      [1, 1]
# 2        [-1]
# 3         [1]
# 4    [-1, -1]
# Name: a, dtype: object

Если вы имеете дело со строковыми значениями:

      s = pd.DataFrame(['A','A','A','BB','BB','CC','A','A','BB'], columns=['a'])
string_groups = sum([['%s_%s' % (i,n) for i in g] for n,(k,g) in enumerate(itertools.groupby(s.a))],[])

>>> string_groups 
['A_0', 'A_0', 'A_0', 'BB_1', 'BB_1', 'CC_2', 'A_3', 'A_3', 'BB_4']

grouped = s.groupby(string_groups, sort=False).agg(list)
grouped.index = grouped.index.str.split('_').str[0]

>>> grouped
            a
A   [A, A, A]
BB   [BB, BB]
CC       [CC]
A      [A, A]
BB       [BB]
Другие вопросы по тегам