cupy.cuda.cublas.CUBLASError: CUBLAS_STATUS_NOT_INITIALIZED при выполнении умножения матрицы на кубики
Я новичок, занимающийся управлением средой conda, pip и т. Д. Когда я попытался создать двухточечный матричный массив матрицы (matrix_V и vector_u), я обнаружил следующее сообщение об ошибке:
vector_predict = matrix_V.dot(vector_u)
File "cupy/core/core.pyx", line 1791, in cupy.core.core.ndarray.dot
File "cupy/core/core.pyx", line 3809, in cupy.core.core.dot
File "cupy/core/core.pyx", line 4193, in cupy.core.core.tensordot_core
File "cupy/cuda/device.pyx", line 29, in cupy.cuda.device.get_cublas_handle
File "cupy/cuda/device.pyx", line 34, in cupy.cuda.device.get_cublas_handle
File "cupy/cuda/device.pyx", line 159, in cupy.cuda.device.Device.cublas_handle.__get__
File "cupy/cuda/device.pyx", line 160, in cupy.cuda.device.Device.cublas_handle.__get__
File "cupy/cuda/cublas.pyx", line 297, in cupy.cuda.cublas.create
File "cupy/cuda/cublas.pyx", line 286, in cupy.cuda.cublas.check_status
cupy.cuda.cublas.CUBLASError: CUBLAS_STATUS_NOT_INITIALIZED
Я думаю, что это может быть вызвано конфликтом версий некоторых пакетов. Но я не знаю, как решить это. Я использую Cuda 10.0.130 и CuDNN 7.3.1. Я проверил, что они оба работают. Я использую cupy-cuda100, который устанавливается через pip, и я могу успешно импортировать его в мою виртуальную среду. Причина, по которой я не использую один из conda, заключается в том, что версия cupy в conda (5.1.0) может быть слишком низкой, и моя программа жалуется на это. Я надеюсь, что эта информация полезна. Если нет, пожалуйста, дайте мне знать, какая информация помогает.
Заранее спасибо.
Я попытался вызвать cupy.cuda.get_cublas_handle(), как предложил Кеничи. Я получил следующее сообщение об ошибке:
cupy.cuda.get_cublas_handle()
File "cupy/cuda/device.pyx", line 29, in cupy.cuda.device.get_cublas_handle
File "cupy/cuda/device.pyx", line 34, in cupy.cuda.device.get_cublas_handle
File "cupy/cuda/device.pyx", line 159, in cupy.cuda.device.Device.cublas_handle.__get__
File "cupy/cuda/device.pyx", line 160, in cupy.cuda.device.Device.cublas_handle.__get__
File "cupy/cuda/cublas.pyx", line 297, in cupy.cuda.cublas.create
File "cupy/cuda/cublas.pyx", line 286, in cupy.cuda.cublas.check_status
cupy.cuda.cublas.CUBLASError: CUBLAS_STATUS_NOT_INITIALIZED
Я также заметил, что pip install cupy также устанавливает numpy, хотя в моей виртуальной среде уже установлена numpy, поставляемая с установкой tenorflow. Несмотря на то, что обе версии имеют одинаковую версию, мне было интересно, в этом ли проблема.
Это вывод, запустив пример batchCUBLAS:
batchCUBLAS Starting...
GPU Device 0: "GeForce RTX 2080" with compute capability 7.5
==== Running single kernels ====
Testing sgemm
#### args: ta=0 tb=0 m=128 n=128 k=128 alpha = (0xbf800000, -1)
beta= (0x40000000, 2)
#### args: lda=128 ldb=128 ldc=128
^^^^ elapsed = 0.00004601 sec GFLOPS=91.1512
@@@@ sgemm test OK
Testing dgemm
#### args: ta=0 tb=0 m=128 n=128 k=128 alpha = (0x0000000000000000, 0) beta= (0x0000000000000000, 0)
#### args: lda=128 ldb=128 ldc=128
^^^^ elapsed = 0.00005293 sec GFLOPS=79.2441
@@@@ dgemm test OK
==== Running N=10 without streams ====
Testing sgemm
#### args: ta=0 tb=0 m=128 n=128 k=128 alpha = (0xbf800000, -1) beta= (0x00000000, 0)
#### args: lda=128 ldb=128 ldc=128
^^^^ elapsed = 0.00008917 sec GFLOPS=470.379
@@@@ sgemm test OK
Testing dgemm
#### args: ta=0 tb=0 m=128 n=128 k=128 alpha = (0xbff0000000000000, -1) beta= (0x0000000000000000, 0)
#### args: lda=128 ldb=128 ldc=128
^^^^ elapsed = 0.00029612 sec GFLOPS=141.644
@@@@ dgemm test OK
==== Running N=10 with streams ====
Testing sgemm
#### args: ta=0 tb=0 m=128 n=128 k=128 alpha = (0x40000000, 2) beta= (0x40000000, 2)
#### args: lda=128 ldb=128 ldc=128
^^^^ elapsed = 0.00004601 sec GFLOPS=911.512
@@@@ sgemm test OK
Testing dgemm
#### args: ta=0 tb=0 m=128 n=128 k=128 alpha = (0xbff0000000000000, -1) beta= (0x0000000000000000, 0)
#### args: lda=128 ldb=128 ldc=128
^^^^ elapsed = 0.00018787 sec GFLOPS=223.251
@@@@ dgemm test OK
==== Running N=10 batched ====
Testing sgemm
#### args: ta=0 tb=0 m=128 n=128 k=128 alpha = (0x3f800000, 1) beta= (0xbf800000, -1)
#### args: lda=128 ldb=128 ldc=128
^^^^ elapsed = 0.00003600 sec GFLOPS=1165.05
@@@@ sgemm test OK
Testing dgemm
#### args: ta=0 tb=0 m=128 n=128 k=128 alpha = (0xbff0000000000000, -1) beta= (0x4000000000000000, 2)
#### args: lda=128 ldb=128 ldc=128
^^^^ elapsed = 0.00030279 sec GFLOPS=138.521
@@@@ dgemm test OK
Test Summary
0 error(s)
cupy.show_config()
выход:
CuPy Version : 5.2.0
CUDA Root : /usr/local/cuda-10.0
CUDA Build Version : 10000
CUDA Driver Version : 10000
CUDA Runtime Version : 10000
cuDNN Build Version : 7301
cuDNN Version : 7401
NCCL Build Version : 2307
pip freeze | grep cupy
выход:
cupy-cuda100==5.2.0