Можно ли указать собственную функцию расстояния с помощью кластеризации K-Means scikit-learn?

Можно ли указать собственную функцию расстояния с помощью кластеризации K-Means scikit-learn?

10 ответов

Вот небольшое kmeans, которое использует любое из 20 с лишним расстояний в scipy.spatial.distance или пользовательскую функцию.
Будут приветствоваться комментарии (пока только один пользователь имеет недостаточно); в частности, каковы ваши N, dim, k, метрика?

#!/usr/bin/env python
# kmeans.py using any of the 20-odd metrics in scipy.spatial.distance
# kmeanssample 2 pass, first sample sqrt(N)

from __future__ import division
import random
import numpy as np
from scipy.spatial.distance import cdist  # $scipy/spatial/distance.py
    # http://docs.scipy.org/doc/scipy/reference/spatial.html
from scipy.sparse import issparse  # $scipy/sparse/csr.py

__date__ = "2011-11-17 Nov denis"
    # X sparse, any cdist metric: real app ?
    # centres get dense rapidly, metrics in high dim hit distance whiteout
    # vs unsupervised / semi-supervised svm

#...............................................................................
def kmeans( X, centres, delta=.001, maxiter=10, metric="euclidean", p=2, verbose=1 ):
    """ centres, Xtocentre, distances = kmeans( X, initial centres ... )
    in:
        X N x dim  may be sparse
        centres k x dim: initial centres, e.g. random.sample( X, k )
        delta: relative error, iterate until the average distance to centres
            is within delta of the previous average distance
        maxiter
        metric: any of the 20-odd in scipy.spatial.distance
            "chebyshev" = max, "cityblock" = L1, "minkowski" with p=
            or a function( Xvec, centrevec ), e.g. Lqmetric below
        p: for minkowski metric -- local mod cdist for 0 < p < 1 too
        verbose: 0 silent, 2 prints running distances
    out:
        centres, k x dim
        Xtocentre: each X -> its nearest centre, ints N -> k
        distances, N
    see also: kmeanssample below, class Kmeans below.
    """
    if not issparse(X):
        X = np.asanyarray(X)  # ?
    centres = centres.todense() if issparse(centres) \
        else centres.copy()
    N, dim = X.shape
    k, cdim = centres.shape
    if dim != cdim:
        raise ValueError( "kmeans: X %s and centres %s must have the same number of columns" % (
            X.shape, centres.shape ))
    if verbose:
        print "kmeans: X %s  centres %s  delta=%.2g  maxiter=%d  metric=%s" % (
            X.shape, centres.shape, delta, maxiter, metric)
    allx = np.arange(N)
    prevdist = 0
    for jiter in range( 1, maxiter+1 ):
        D = cdist_sparse( X, centres, metric=metric, p=p )  # |X| x |centres|
        xtoc = D.argmin(axis=1)  # X -> nearest centre
        distances = D[allx,xtoc]
        avdist = distances.mean()  # median ?
        if verbose >= 2:
            print "kmeans: av |X - nearest centre| = %.4g" % avdist
        if (1 - delta) * prevdist <= avdist <= prevdist \
        or jiter == maxiter:
            break
        prevdist = avdist
        for jc in range(k):  # (1 pass in C)
            c = np.where( xtoc == jc )[0]
            if len(c) > 0:
                centres[jc] = X[c].mean( axis=0 )
    if verbose:
        print "kmeans: %d iterations  cluster sizes:" % jiter, np.bincount(xtoc)
    if verbose >= 2:
        r50 = np.zeros(k)
        r90 = np.zeros(k)
        for j in range(k):
            dist = distances[ xtoc == j ]
            if len(dist) > 0:
                r50[j], r90[j] = np.percentile( dist, (50, 90) )
        print "kmeans: cluster 50 % radius", r50.astype(int)
        print "kmeans: cluster 90 % radius", r90.astype(int)
            # scale L1 / dim, L2 / sqrt(dim) ?
    return centres, xtoc, distances

#...............................................................................
def kmeanssample( X, k, nsample=0, **kwargs ):
    """ 2-pass kmeans, fast for large N:
        1) kmeans a random sample of nsample ~ sqrt(N) from X
        2) full kmeans, starting from those centres
    """
        # merge w kmeans ? mttiw
        # v large N: sample N^1/2, N^1/2 of that
        # seed like sklearn ?
    N, dim = X.shape
    if nsample == 0:
        nsample = max( 2*np.sqrt(N), 10*k )
    Xsample = randomsample( X, int(nsample) )
    pass1centres = randomsample( X, int(k) )
    samplecentres = kmeans( Xsample, pass1centres, **kwargs )[0]
    return kmeans( X, samplecentres, **kwargs )

def cdist_sparse( X, Y, **kwargs ):
    """ -> |X| x |Y| cdist array, any cdist metric
        X or Y may be sparse -- best csr
    """
        # todense row at a time, v slow if both v sparse
    sxy = 2*issparse(X) + issparse(Y)
    if sxy == 0:
        return cdist( X, Y, **kwargs )
    d = np.empty( (X.shape[0], Y.shape[0]), np.float64 )
    if sxy == 2:
        for j, x in enumerate(X):
            d[j] = cdist( x.todense(), Y, **kwargs ) [0]
    elif sxy == 1:
        for k, y in enumerate(Y):
            d[:,k] = cdist( X, y.todense(), **kwargs ) [0]
    else:
        for j, x in enumerate(X):
            for k, y in enumerate(Y):
                d[j,k] = cdist( x.todense(), y.todense(), **kwargs ) [0]
    return d

def randomsample( X, n ):
    """ random.sample of the rows of X
        X may be sparse -- best csr
    """
    sampleix = random.sample( xrange( X.shape[0] ), int(n) )
    return X[sampleix]

def nearestcentres( X, centres, metric="euclidean", p=2 ):
    """ each X -> nearest centre, any metric
            euclidean2 (~ withinss) is more sensitive to outliers,
            cityblock (manhattan, L1) less sensitive
    """
    D = cdist( X, centres, metric=metric, p=p )  # |X| x |centres|
    return D.argmin(axis=1)

def Lqmetric( x, y=None, q=.5 ):
    # yes a metric, may increase weight of near matches; see ...
    return (np.abs(x - y) ** q) .mean() if y is not None \
        else (np.abs(x) ** q) .mean()

#...............................................................................
class Kmeans:
    """ km = Kmeans( X, k= or centres=, ... )
        in: either initial centres= for kmeans
            or k= [nsample=] for kmeanssample
        out: km.centres, km.Xtocentre, km.distances
        iterator:
            for jcentre, J in km:
                clustercentre = centres[jcentre]
                J indexes e.g. X[J], classes[J]
    """
    def __init__( self, X, k=0, centres=None, nsample=0, **kwargs ):
        self.X = X
        if centres is None:
            self.centres, self.Xtocentre, self.distances = kmeanssample(
                X, k=k, nsample=nsample, **kwargs )
        else:
            self.centres, self.Xtocentre, self.distances = kmeans(
                X, centres, **kwargs )

    def __iter__(self):
        for jc in range(len(self.centres)):
            yield jc, (self.Xtocentre == jc)

#...............................................................................
if __name__ == "__main__":
    import random
    import sys
    from time import time

    N = 10000
    dim = 10
    ncluster = 10
    kmsample = 100  # 0: random centres, > 0: kmeanssample
    kmdelta = .001
    kmiter = 10
    metric = "cityblock"  # "chebyshev" = max, "cityblock" L1,  Lqmetric
    seed = 1

    exec( "\n".join( sys.argv[1:] ))  # run this.py N= ...
    np.set_printoptions( 1, threshold=200, edgeitems=5, suppress=True )
    np.random.seed(seed)
    random.seed(seed)

    print "N %d  dim %d  ncluster %d  kmsample %d  metric %s" % (
        N, dim, ncluster, kmsample, metric)
    X = np.random.exponential( size=(N,dim) )
        # cf scikits-learn datasets/
    t0 = time()
    if kmsample > 0:
        centres, xtoc, dist = kmeanssample( X, ncluster, nsample=kmsample,
            delta=kmdelta, maxiter=kmiter, metric=metric, verbose=2 )
    else:
        randomcentres = randomsample( X, ncluster )
        centres, xtoc, dist = kmeans( X, randomcentres,
            delta=kmdelta, maxiter=kmiter, metric=metric, verbose=2 )
    print "%.0f msec" % ((time() - t0) * 1000)

    # also ~/py/np/kmeans/test-kmeans.py

Некоторые заметки добавлены 26мар 2012:

1) для косинусного расстояния сначала нормализуем все векторы данных к |X| = 1; затем

cosinedistance( X, Y ) = 1 - X . Y = Euclidean distance |X - Y|^2 / 2

это быстро. Для битовых векторов храните нормы отдельно от векторов, а не расширяйте их до чисел с плавающей запятой (хотя некоторые программы могут расширяться для вас). Для разреженных векторов, скажем, 1 % от N, X . Y должен занять время O( 2 % N), пробел O(N); но я не знаю, какие программы это делают.

2) Кластеризация Scikit-Learn дает превосходный обзор k-средних, мини-batch-k-средних... с кодом, который работает с матрицами scipy.sparse.

3) Всегда проверяйте размеры кластеров после k-средних. Если вы ожидаете кластеры примерно одинакового размера, но они выходят[44 37 9 5 5] %... (звук царапин на голове).

К сожалению, нет: scikit-learn текущая реализация k-средних использует только евклидовы расстояния.

Просто используйте вместо этого nltk, где вы можете сделать это, например

from nltk.cluster.kmeans import KMeansClusterer
NUM_CLUSTERS = <choose a value>
data = <sparse matrix that you would normally give to scikit>.toarray()

kclusterer = KMeansClusterer(NUM_CLUSTERS, distance=nltk.cluster.util.cosine_distance, repeats=25)
assigned_clusters = kclusterer.cluster(data, assign_clusters=True)

Да, вы можете использовать функцию разницы метрик; однако, по определению, алгоритм кластеризации k-средних основан на евклидовом расстоянии от среднего значения каждого кластера.

Вы можете использовать другую метрику, поэтому, хотя вы все еще вычисляете среднее значение, вы можете использовать что-то вроде расстояния Махалнобиса.

Существует pyclustering, который является Python/C++ (так быстро!) И позволяет вам указать пользовательскую метрическую функцию

from pyclustering.cluster.kmeans import kmeans
from pyclustering.utils.metric import type_metric, distance_metric

user_function = lambda point1, point2: point1[0] + point2[0] + 2
metric = distance_metric(type_metric.USER_DEFINED, func=user_function)

# create K-Means algorithm with specific distance metric
start_centers = [[4.7, 5.9], [5.7, 6.5]];
kmeans_instance = kmeans(sample, start_centers, metric=metric)

# run cluster analysis and obtain results
kmeans_instance.process()
clusters = kmeans_instance.get_clusters()

На самом деле, я не проверял этот код, но собрал его вместе из кода заявки и примера.

k-средство Spectral Python позволяет использовать расстояние L1 (Манхэттен).

Sklearn Kmeans использует евклидово расстояние. У него нет метрического параметра. При этом если вы группируете временные ряды, вы можете использовать tslearn пакет Python, когда вы можете указать метрику (dtw, softdtw, euclidean).

Алгоритм распространения Affinity из библиотеки sklearn позволяет передавать матрицу сходства вместо выборок. Таким образом, вы можете использовать свою метрику для вычисления матрицы сходства (не матрицы несходства) и передать ее функции, установив для термина «сходство» значение «предварительно вычисленный». https://scikit-learn.org/stable/modules/ generate/sklearn.cluster.AffinityPropagation.html#sklearn.cluster.AffinityPropagation.fit С точки зрения K-Mean, я думаю, что это также возможно, но я не пробовал. Однако, как указано в других ответах, проблемой будет нахождение среднего значения с использованием другой метрики. Вместо этого вы можете использовать алгоритм PAM (K-Medoids), поскольку он вычисляет изменение общего отклонения (TD), поэтому он не зависит от метрики расстояния. https://python-kmedoids.readthedocs.io/en/latest/#fasterpam

Да, в текущей стабильной версии sklearn (scikit-learn 1.1.3) вы можете легко использовать собственную метрику расстояния. Все, что вам нужно сделать, это создать класс, который наследуется отsklearn.cluster.KMeansи перезаписывает его_transformметод.

В приведенном ниже примере показано расстояние долговой расписки от документа Yolov2.

      import sklearn.cluster
import numpy as np

def anchor_iou(box_dims, centroid_box_dims):
    box_w, box_h = box_dims[..., 0], box_dims[..., 1]
    centroid_w, centroid_h = centroid_box_dims[..., 0], centroid_box_dims[..., 1]
    inter_w = np.minimum(box_w[..., np.newaxis], centroid_w[np.newaxis, ...])
    inter_h = np.minimum(box_h[..., np.newaxis], centroid_h[np.newaxis, ...])
    inter_area = inter_w * inter_h
    centroid_area = centroid_w * centroid_h
    box_area = box_w * box_h
    return inter_area / (
        centroid_area[np.newaxis, ...] + box_area[..., np.newaxis] - inter_area
    )

class IOUKMeans(sklearn.cluster.KMeans):
    def __init__(
        self,
        n_clusters=8,
        *,
        init="k-means++",
        n_init=10,
        max_iter=300,
        tol=1e-4,
        verbose=0,
        random_state=None,
        copy_x=True,
        algorithm="lloyd",
    ):
        super().__init__(
            n_clusters=n_clusters,
            init=init,
            n_init=n_init,
            max_iter=max_iter,
            tol=tol,
            verbose=verbose,
            random_state=random_state,
            copy_x=copy_x,
            algorithm=algorithm
        )

    def _transform(self, X):
        return anchor_iou(X, self.cluster_centers_)

rng = np.random.default_rng(12345)
num_boxes = 10
bboxes = rng.integers(low=0, high=100, size=(num_boxes, 2))

kmeans = IOUKMeans(num_clusters).fit(bboxes)

def distance_metrics(dist_metrics):
    kmeans_instance = kmeans(trs_data, initial_centers, metric=dist_metrics)

    label = np.zeros(210, dtype=int)
    for i in range(0, len(clusters)):
        for index, j in enumerate(clusters[i]):
            label[j] = i
Другие вопросы по тегам