Медленное выполнение запроса в большом разделе
У меня есть схема БД, которая разделена на поле меток времени, каждый раздел содержит 155 уникальных значений меток времени, и его размер составляет 1,5 ГБ. схема очень проста и включает отметку времени, идентификатор объекта и дополнительные поля (без внешних ключей и без объединений). первичный ключ - это отметка времени и поле идентификатора объекта.
Теперь выполнение следующего запроса занимает ~50 секунд.
SELECT c_aggregated_data_10_minutes */
from_time,
object_id,
object_type,
latencies_ttlbsec_sum,
usage_hits_total
FROM
metric_store.lc_aggregated_data_master_10_minutes
WHERE
object_id in ( list of ~100 ids) AND
from_time >= 1351602600 AND
from_time < 1351688400
промежуток времени в условии охватывает 144 временные точки
план выполнения выглядит следующим образом:
"Result (cost=0.00..279041.19 rows=68274 width=24)"
" -> Append (cost=0.00..279041.19 rows=68274 width=24)"
" -> Seq Scan on lc_aggregated_data_master_10_minutes (cost=0.00..0.00 rows=1 width=24)"
" Filter: ((from_time >= 1351602600) AND (from_time < 1351688400) AND (object_id = ANY ('{258453,260435,259490,262254,261341,445607,263218,447674,446803,448540,9532,2071,5232,2429532,246502,3939,244000,241179,236971,254544,252928,250982,248878,257377,5893,256092,5707,2986,733,7765,3836,7850,2885,100,9744,4435,10492,2441779,573255,8105,993,6004,5052,7581,15,10171,7363,10381,822,4340,5616,2673,2174,10696,7028,10066,8845,10595,2499,3184,6325,2280,10278,519,8020,1504,3081,7935,3741,4235,3535,5428,6218,7472,567771,568316,568862,569411,8954,570517,569972,571619,571062,572710,572165,9862,1710,1875,6541,2397,205,4756,2435059,4859,562859,563404,426,562308,6434,8738,4038,567226,566681,7260,566130,565584,8628,565039,564494,2492165,563949,1286,8307,5141,9308,1080,6824,6640,9961,518277,519721,556424,178509,555067,160902,559587,558254,522427,520857,524956,523659,229743,3379,222533,215285,208058,200756,193533,186251,5327,630,505950,7680,3632,2491614,517196,509766,510971,507374,508381,1593,4965,514786,9425,515944,512018,513537,1974,1377,9128,4129,5529,503659,504806,471537,495721,1201,496761,497870,499285,500262,3284,501341,502624,309,6733,4639,6915,470231,467992,469134,465660,466675,463127,8196,464183,6107,461061,462081,2790,459792,9043,455646,456791,457747,458721,451617,452556,453738,454718,9213,9643,8414,449680,450608}'::integer[])))"
" -> Bitmap Heap Scan on lc_aggregated_data_10_minutes_from_1351510800 lc_aggregated_data_master_10_minutes (cost=1444.26..174220.14 rows=42626 width=24)"
" Recheck Cond: ((from_time >= 1351602600) AND (from_time < 1351688400))"
" Filter: (object_id = ANY ('{258453,260435,259490,262254,261341,445607,263218,447674,446803,448540,9532,2071,5232,2429532,246502,3939,244000,241179,236971,254544,252928,250982,248878,257377,5893,256092,5707,2986,733,7765,3836,7850,2885,100,9744,4435,10492,2441779,573255,8105,993,6004,5052,7581,15,10171,7363,10381,822,4340,5616,2673,2174,10696,7028,10066,8845,10595,2499,3184,6325,2280,10278,519,8020,1504,3081,7935,3741,4235,3535,5428,6218,7472,567771,568316,568862,569411,8954,570517,569972,571619,571062,572710,572165,9862,1710,1875,6541,2397,205,4756,2435059,4859,562859,563404,426,562308,6434,8738,4038,567226,566681,7260,566130,565584,8628,565039,564494,2492165,563949,1286,8307,5141,9308,1080,6824,6640,9961,518277,519721,556424,178509,555067,160902,559587,558254,522427,520857,524956,523659,229743,3379,222533,215285,208058,200756,193533,186251,5327,630,505950,7680,3632,2491614,517196,509766,510971,507374,508381,1593,4965,514786,9425,515944,512018,513537,1974,1377,9128,4129,5529,503659,504806,471537,495721,1201,496761,497870,499285,500262,3284,501341,502624,309,6733,4639,6915,470231,467992,469134,465660,466675,463127,8196,464183,6107,461061,462081,2790,459792,9043,455646,456791,457747,458721,451617,452556,453738,454718,9213,9643,8414,449680,450608}'::integer[]))"
" -> Bitmap Index Scan on lc_aggregated_data_10_minutes_from_1351510800_pkey (cost=0.00..1433.60 rows=66382 width=0)"
" Index Cond: ((from_time >= 1351602600) AND (from_time < 1351688400))"
" -> Bitmap Heap Scan on lc_aggregated_data_10_minutes_from_1351630800 lc_aggregated_data_master_10_minutes (cost=866.98..104821.05 rows=25647 width=24)"
" Recheck Cond: ((from_time >= 1351602600) AND (from_time < 1351688400))"
" Filter: (object_id = ANY ('{258453,260435,259490,262254,261341,445607,263218,447674,446803,448540,9532,2071,5232,2429532,246502,3939,244000,241179,236971,254544,252928,250982,248878,257377,5893,256092,5707,2986,733,7765,3836,7850,2885,100,9744,4435,10492,2441779,573255,8105,993,6004,5052,7581,15,10171,7363,10381,822,4340,5616,2673,2174,10696,7028,10066,8845,10595,2499,3184,6325,2280,10278,519,8020,1504,3081,7935,3741,4235,3535,5428,6218,7472,567771,568316,568862,569411,8954,570517,569972,571619,571062,572710,572165,9862,1710,1875,6541,2397,205,4756,2435059,4859,562859,563404,426,562308,6434,8738,4038,567226,566681,7260,566130,565584,8628,565039,564494,2492165,563949,1286,8307,5141,9308,1080,6824,6640,9961,518277,519721,556424,178509,555067,160902,559587,558254,522427,520857,524956,523659,229743,3379,222533,215285,208058,200756,193533,186251,5327,630,505950,7680,3632,2491614,517196,509766,510971,507374,508381,1593,4965,514786,9425,515944,512018,513537,1974,1377,9128,4129,5529,503659,504806,471537,495721,1201,496761,497870,499285,500262,3284,501341,502624,309,6733,4639,6915,470231,467992,469134,465660,466675,463127,8196,464183,6107,461061,462081,2790,459792,9043,455646,456791,457747,458721,451617,452556,453738,454718,9213,9643,8414,449680,450608}'::integer[]))"
" -> Bitmap Index Scan on lc_aggregated_data_10_minutes_from_1351630800_pkey (cost=0.00..860.56 rows=39940 width=0)"
" Index Cond: ((from_time >= 1351602600) AND (from_time < 1351688400))"
Как я могу ускорить выполнение этого запроса (получить его менее чем за 10 секунд)
1 ответ
Создать индекс на id
или сделать первичный ключ с id
первый (id, ts) вместо вместо (ts, id). Кстати, поле метки времени - это метка времени Unix, которую не следует путать с postgresql timestamp
тип данных.