Вычислите 5 различных скользящих средних для каждого запаса в большом df

У меня есть датафрейм с ценами на акции. Пример ниже, но это продолжается для 4500 строк цен на акции

>>
DATE        MMM     US Equity   AIR     US Equity
1/3/2000    47.19               17.56
1/4/2000    45.31               17.63
1/5/2000    46.63               17.81
1/6/2000    50.38               17.94

Я создал скользящее среднее, используя итеритемы со следующим

>>>for stockname, stock in df.iteritems():     
# Create 10,30,50,100 and 200D MAvgs                             
MA10D = stock.rolling(10).mean()
MA30D = stock.rolling(30).mean()
MA50D = stock.rolling(50).mean()
MA100D = stock.rolling(100).mean()
MA200D = stock.rolling(200).mean()
df_stockname = pd.concat([df[[1]],MA10D,MA30D,MA50D,MA100D,MA200D],axis=1)

Проблема в том, что это показывает только последний элемент в цикле (запас AIR US Equity). Как получить доступ к MA10D, MA30D и т. Д. Для первой акции в цикле (т. Е. Акции США MMM, которая является первой акцией в df). Как я могу это сделать

В конечном итоге я хочу иметь возможность создавать два фрейма данных, по одному для каждой акции с ценой акции, MA10D, MA30D, MA50D, MA100D и MA200D. Поэтому мне нужен способ назвать каждый фрейм данных и изменить df[[#]] в concat.

1 ответ

Это то, что вы пытаетесь сделать?

results = {}

# Create 10,30,50,100 and 200D MAvgs                             
for stockname, stock in df.iteritems():
    df_copy = pd.DataFrame(stock)
    df_copy[stockname + '_MA10D'] = stock.rolling(10).mean()
    df_copy[stockname + '_MA30D'] = stock.rolling(30).mean()
    df_copy[stockname + '_MA50D'] = stock.rolling(50).mean()
    df_copy[stockname + '_MA100D'] = stock.rolling(100).mean()
    df_copy[stockname + '_MA200D'] = stock.rolling(200).mean()
    results[stockname] = df_copy

Вот полная версия, которая должна быть выполнена, и результаты:

data = {
    'MMM': (47.19, 45.31, 46.63, 50.38),
    'AIR': (17.56, 17.63, 17.81, 17.94)
}
index = pd.Index(pd.date_range("01/03/2000", "01/06/2000"), name='DATE')
df = pd.DataFrame(data=data, index=index)

results = {}

# Create 10,30,50,100 and 200D MAvgs                             
for stockname, stock in df.iteritems():
    df_copy = pd.DataFrame(stock)
    df_copy[stockname + '_MA10D'] = stock.rolling(10).mean()
    df_copy[stockname + '_MA30D'] = stock.rolling(30).mean()
    df_copy[stockname + '_MA50D'] = stock.rolling(50).mean()
    df_copy[stockname + '_MA100D'] = stock.rolling(100).mean()
    df_copy[stockname + '_MA200D'] = stock.rolling(200).mean()
    results[stockname] = df_copy

print(results['MMM'])
print(results['AIR'])

Выход:

              MMM  MMM_MA10D  MMM_MA30D  MMM_MA50D  MMM_MA100D  MMM_MA200D
DATE                                                                      
2000-01-03  47.19        NaN        NaN        NaN         NaN         NaN
2000-01-04  45.31        NaN        NaN        NaN         NaN         NaN
2000-01-05  46.63        NaN        NaN        NaN         NaN         NaN
2000-01-06  50.38        NaN        NaN        NaN         NaN         NaN
              AIR  AIR_MA10D  AIR_MA30D  AIR_MA50D  AIR_MA100D  AIR_MA200D
DATE                                                                      
2000-01-03  17.56        NaN        NaN        NaN         NaN         NaN
2000-01-04  17.63        NaN        NaN        NaN         NaN         NaN
2000-01-05  17.81        NaN        NaN        NaN         NaN         NaN
2000-01-06  17.94        NaN        NaN        NaN         NaN         NaN
Другие вопросы по тегам