Способ сделать это с помощью применить?
Я хочу взять среднее для каждой строки в разных фреймах данных. Кто-нибудь знает более умный способ сделать это, используя операторы apply? Извините за стену кода.
Вам понадобится вектор 1000:1006 для каждого hiXXXX
файл, а затем вектор 2:13 для столбцов. Я использовал mapply для чего-то странного, как это раньше, так что, может быть, это может сделать как-нибудь?
for (i in 1:nrow(subavg)) {
subavg[i,c(2)] <- mean(c(hi1000[i,c(2)],hi1001[i,c(2)],hi1002[i,c(2)],hi1003[i,c(2)],hi1004[i,c(2)],hi1005[i,c(2)],hi1006[i,c(2)]))
subavg[i,c(3)] <- mean(c(hi1000[i,c(3)],hi1001[i,c(3)],hi1002[i,c(3)],hi1003[i,c(3)],hi1004[i,c(3)],hi1005[i,c(3)],hi1006[i,c(3)]))
subavg[i,c(4)] <- mean(c(hi1000[i,c(4)],hi1001[i,c(4)],hi1002[i,c(4)],hi1003[i,c(4)],hi1004[i,c(4)],hi1005[i,c(4)],hi1006[i,c(4)]))
subavg[i,c(5)] <- mean(c(hi1000[i,c(5)],hi1001[i,c(5)],hi1002[i,c(5)],hi1003[i,c(5)],hi1004[i,c(5)],hi1005[i,c(5)],hi1006[i,c(5)]))
subavg[i,c(6)] <- mean(c(hi1000[i,c(6)],hi1001[i,c(6)],hi1002[i,c(6)],hi1003[i,c(6)],hi1004[i,c(6)],hi1005[i,c(6)],hi1006[i,c(6)]))
subavg[i,c(7)] <- mean(c(hi1000[i,c(7)],hi1001[i,c(7)],hi1002[i,c(7)],hi1003[i,c(7)],hi1004[i,c(7)],hi1005[i,c(7)],hi1006[i,c(7)]))
subavg[i,c(8)] <- mean(c(hi1000[i,c(8)],hi1001[i,c(8)],hi1002[i,c(8)],hi1003[i,c(8)],hi1004[i,c(8)],hi1005[i,c(8)],hi1006[i,c(8)]))
subavg[i,c(9)] <- mean(c(hi1000[i,c(9)],hi1001[i,c(9)],hi1002[i,c(9)],hi1003[i,c(9)],hi1004[i,c(9)],hi1005[i,c(9)],hi1006[i,c(9)]))
subavg[i,c(10)] <- mean(c(hi1000[i,c(10)],hi1001[i,c(10)],hi1002[i,c(10)],hi1003[i,c(10)],hi1004[i,c(10)],hi1005[i,c(10)],hi1006[i,c(10)]))
subavg[i,c(11)] <- mean(c(hi1000[i,c(11)],hi1001[i,c(11)],hi1002[i,c(11)],hi1003[i,c(11)],hi1004[i,c(11)],hi1005[i,c(11)],hi1006[i,c(11)]))
subavg[i,c(12)] <- mean(c(hi1000[i,c(12)],hi1001[i,c(12)],hi1002[i,c(12)],hi1003[i,c(12)],hi1004[i,c(12)],hi1005[i,c(12)],hi1006[i,c(12)]))
subavg[i,c(13)] <- mean(c(hi1000[i,c(13)],hi1001[i,c(13)],hi1002[i,c(13)],hi1003[i,c(13)],hi1004[i,c(13)],hi1005[i,c(13)],hi1006[i,c(13)]))
}
1 ответ
Поскольку существует только 7 наборов данных, мы можем использовать это в качестве аргументов для Map
, затем cbind
это, и получить rowMeans
Map(function(...) rowMeans(cbind(...)), hi1000, hi1001, hi1002, hi1003,
hi1004, hi1005, hi1006)
Или использовать +
с Reduce
после получения наборов данных в list
а затем разделить на общее количество наборов данных, то есть 7
Reduce(`+`, mget(paste0("hi", 1000:1006)))/7
Второе решение является более компактным, но если в наборе данных есть NA, лучше использовать первое в качестве rowMeans
иметь na.rm
аргумент. По умолчанию это FALSE
, но мы можем установить его TRUE
,