Определить разговорный язык, создав спектрограммы в Python?
Я практикую код распознавания разговорной речи из " https://github.com/YerevaNN/Spoken-language-identification".
Входной набор данных "csv" загружен с " https://gist.github.com/Harhro94/aa11fe6b454c614cdedea882fd00f8d7"
Первая задача - преобразовать входные данные в спектрограммы. Я пробовал этот код, но показывает ошибку. Вы можете использовать любой аудиофайл (wav-файл) для этого примера.
оригинальный код от github: ' https://github.com/YerevaNN/Spoken-language-identification/blob/master/create_spectrograms.py
import numpy as np
from matplotlib import pyplot as plt
import scipy.io.wavfile as wav
from numpy.lib import stride_tricks
import PIL.Image as Image
import os
def stft(sig, frameSize, overlapFac=0.5, window=np.hanning):
win = window(frameSize)
hopSize = int(frameSize - np.floor(overlapFac * frameSize))
samples = np.append(np.zeros(np.floor(frameSize / 2.0)), sig)
cols = np.ceil((len(samples) - frameSize) / float(hopSize)) + 1
samples = np.append(samples, np.zeros(frameSize))
frames = stride_tricks.as_strided(samples, shape=(cols, frameSize),
strides=(samples.strides[0] * hopSize,
samples.strides[0])).copy()
frames *= win
return np.fft.rfft(frames)
def logscale_spec(spec, sr=44100, factor=20, alpha=1.0, f0=0.9, fmax=1):
spec = spec[:, 0:256]
timebins, freqbins = np.shape(spec)
scale = np.linspace(0, 1, freqbins) # ** factor
scale = np.array(map(lambda x: x * alpha
if x <= f0 else (fmax - alpha * f0) / (fmax - f0) *
(x - f0) + alpha * f0, scale))
scale *= (freqbins - 1) / max(scale)
newspec = np.complex128(np.zeros([timebins, freqbins]))
allfreqs = np.abs(np.fft.fftfreq(freqbins * 2, 1. / sr)[:freqbins + 1])
freqs = [0.0 for i in range(freqbins)]
totw = [0.0 for i in range(freqbins)]
for i in range(0, freqbins):
if (i < 1 or i + 1 >= freqbins):
newspec[:, i] += spec[:, i]
freqs[i] += allfreqs[i]
totw[i] += 1.0
continue
else:
w_up = scale[i] - np.floor(scale[i])
w_down = 1 - w_up
j = int(np.floor(scale[i]))
newspec[:, j] += w_down * spec[:, i]
freqs[j] += w_down * allfreqs[i]
totw[j] += w_down
newspec[:, j + 1] += w_up * spec[:, i]
freqs[j + 1] += w_up * allfreqs[i]
totw[j + 1] += w_up
for i in range(len(freqs)):
if (totw[i] > 1e-6):
freqs[i] /= totw[i]
return newspec, freqs
def plotstft(audiopath, binsize=2 ** 10, plotpath=None, colormap="gray",
channel=0, name='sampleaudio.png', alpha=1, offset=0):
samplerate, samples = wav.read(audiopath)
samples = samples[:, channel]
s = stft(samples, binsize)
sshow, freq = logscale_spec(s, factor=1, sr=samplerate, alpha=alpha)
sshow = sshow[2:, :]
ims = 20. * np.log10(np.abs(sshow) / 10e-6)
timebins, freqbins = np.shape(ims)
ims = np.transpose(ims)
ims = ims[0:256, :]
image = Image.fromarray(ims)
image = image.convert('L')
image.save(name)
file = open('trainingData.csv', 'r')
for iter, line in enumerate(file.readlines()[1:]):
filepath = line.split(',')[0]
filename = filepath[:-4]
wavfile = 'sampleaudio.wav'
os.system('mpg123 -w'+wavfile+'/C:/AnacondaProj/sampaudio.wav/'+ filepath)
plotstft(wavfile,channel=0,name='/C:/AnacondaProj/sampaudio.wav/'+
filename+'.png', alpha=1)
# os.remove(wavfile)
print("processed %d files" % (iter + 1))
Спасибо