Переиндексация временных рядов панд от dtype объекта к dtime datetime

У меня есть временной ряд, который не распознается как DatetimeIndex, несмотря на то, что он индексируется стандартными строками YYYY-MM-DD с действительными датами. Принуждение их к действительному DatetimeIndex кажется недостаточно элегантным, чтобы заставить меня думать, что я делаю что-то не так.

Я читаю (чьи-то лениво отформатированные) данные, которые содержат недопустимые значения даты и времени, и удаляю эти недопустимые наблюдения.

In [1]: df = pd.read_csv('data.csv',index_col=0)
In [2]: print df['2008-02-27':'2008-03-02']
Out[2]: 
             count
2008-02-27  20
2008-02-28   0
2008-02-29  27
2008-02-30   0
2008-02-31   0
2008-03-01   0
2008-03-02  17

In [3]: def clean_timestamps(df):
    # remove invalid dates like '2008-02-30' and '2009-04-31'
    to_drop = list()
    for d in df.index:
        try:
            datetime.date(int(d[0:4]),int(d[5:7]),int(d[8:10]))
        except ValueError:
            to_drop.append(d)
    df2 = df.drop(to_drop,axis=0)
    return df2

In [4]: df2 = clean_timestamps(df)
In [5] :print df2['2008-02-27':'2008-03-02']
Out[5]:
             count
2008-02-27  20
2008-02-28   0
2008-02-29  27
2008-03-01   0
2008-03-02  17

Этот новый индекс все еще распознается только как dtype типа "объект", а не как DatetimeIndex.

In [6]: df2.index
Out[6]: Index([2008-01-01, 2008-01-02, 2008-01-03, ..., 2012-11-27, 2012-11-28,
   2012-11-29], dtype=object)

При переиндексации создаются NaN, потому что они имеют разные типы.

In [7]: i = pd.date_range(start=min(df2.index),end=max(df2.index))
In [8]: df3 = df2.reindex(index=i,columns=['count'])
In [9]: df3['2008-02-27':'2008-03-02']
Out[9]: 
            count
2008-02-27 NaN
2008-02-28 NaN
2008-02-29 NaN
2008-03-01 NaN
2008-03-02 NaN

Я создаю новый фрейм данных с соответствующим индексом, перетаскиваю данные в словарь, затем заполняю новый фрейм данных на основе значений словаря (пропуская пропущенные значения).

In [10]: df3 = pd.DataFrame(columns=['count'],index=i)
In [11]: values = dict(df2['count'])
In [12]: for d in i:
    try:
        df3.set_value(index=d,col='count',value=values[d.isoformat()[0:10]])
    except KeyError:
        pass
In [13]: print df3['2008-02-27':'2008-03-02']
Out[13]: 

             count
2008-02-27  20
2008-02-28   0
2008-02-29  27
2008-03-01   0
2008-03-02  17

In [14]: df3.index
Out[14];
<class 'pandas.tseries.index.DatetimeIndex'>
[2008-01-01 00:00:00, ..., 2012-11-29 00:00:00]
Length: 1795, Freq: D, Timezone: None

Эта последняя часть установки значений, основанная на поиске в словаре, снабженном строками, кажется особенно хакерской и заставляет меня думать, что я упустил что-то важное.

1 ответ

Решение

Вы могли бы использовать pd.to_datetime:

In [1]: import pandas as pd

In [2]: pd.to_datetime('2008-02-27')
Out[2]: datetime.datetime(2008, 2, 27, 0, 0)

Это позволяет "очистить" индекс (или аналогично столбцу), применяя его к Серии:

df.index = pd.to_datetime(df.index)

или же

df['date_col'] = df['date_col'].apply(pd.to_datetime)
Другие вопросы по тегам