Пароль по умолчанию для ASP.NET Identity - как это работает и безопасно ли это?

Мне интересно, достаточно ли безопасен пароль хэшер, который по умолчанию реализован в UserManager, который поставляется с MVC 5 и ASP.NET Identity Framework? И если да, то не могли бы вы объяснить мне, как это работает?

Интерфейс IPasswordHasher выглядит так:

public interface IPasswordHasher
{
    string HashPassword(string password);
    PasswordVerificationResult VerifyHashedPassword(string hashedPassword, 
                                                       string providedPassword);
}

Как вы можете видеть, это не требует соли, но упоминается в этой теме: " Хэширование идентификационного пароля Asp.net", что это действительно замаскирует его за кулисами. Так что мне интересно, как это сделать? И откуда эта соль?

Меня беспокоит то, что соль статична, что делает ее небезопасной.

6 ответов

Решение

Вот как работает реализация по умолчанию. Для получения хэша используется функция получения ключа со случайной солью. Соль включена в состав продукции KDF. Таким образом, каждый раз, когда вы "хэшируете" один и тот же пароль, вы получаете разные хэши. Чтобы проверить хеш, выходные данные делятся на соль и остальные, и KDF снова запускается для пароля с указанной солью. Если результат соответствует остальной части исходного вывода, хеш проверяется.

хеширования:

public static string HashPassword(string password)
{
    byte[] salt;
    byte[] buffer2;
    if (password == null)
    {
        throw new ArgumentNullException("password");
    }
    using (Rfc2898DeriveBytes bytes = new Rfc2898DeriveBytes(password, 0x10, 0x3e8))
    {
        salt = bytes.Salt;
        buffer2 = bytes.GetBytes(0x20);
    }
    byte[] dst = new byte[0x31];
    Buffer.BlockCopy(salt, 0, dst, 1, 0x10);
    Buffer.BlockCopy(buffer2, 0, dst, 0x11, 0x20);
    return Convert.ToBase64String(dst);
}

Проверка:

public static bool VerifyHashedPassword(string hashedPassword, string password)
{
    byte[] buffer4;
    if (hashedPassword == null)
    {
        return false;
    }
    if (password == null)
    {
        throw new ArgumentNullException("password");
    }
    byte[] src = Convert.FromBase64String(hashedPassword);
    if ((src.Length != 0x31) || (src[0] != 0))
    {
        return false;
    }
    byte[] dst = new byte[0x10];
    Buffer.BlockCopy(src, 1, dst, 0, 0x10);
    byte[] buffer3 = new byte[0x20];
    Buffer.BlockCopy(src, 0x11, buffer3, 0, 0x20);
    using (Rfc2898DeriveBytes bytes = new Rfc2898DeriveBytes(password, dst, 0x3e8))
    {
        buffer4 = bytes.GetBytes(0x20);
    }
    return ByteArraysEqual(buffer3, buffer4);
}

Поскольку в наши дни ASP.NET является открытым исходным кодом, вы можете найти его на GitHub: AspNet.Identity 3.0 и AspNet.Identity 2.0.

Из комментариев:

/* =======================
 * HASHED PASSWORD FORMATS
 * =======================
 * 
 * Version 2:
 * PBKDF2 with HMAC-SHA1, 128-bit salt, 256-bit subkey, 1000 iterations.
 * (See also: SDL crypto guidelines v5.1, Part III)
 * Format: { 0x00, salt, subkey }
 *
 * Version 3:
 * PBKDF2 with HMAC-SHA256, 128-bit salt, 256-bit subkey, 10000 iterations.
 * Format: { 0x01, prf (UInt32), iter count (UInt32), salt length (UInt32), salt, subkey }
 * (All UInt32s are stored big-endian.)
 */

Я понимаю принятый ответ и проголосовал за него, но подумал, что дам ответ моего мирянина здесь...

Создание хэша

  1. Соль генерируется случайным образом с помощью функции Rfc2898DeriveBytes, которая генерирует хэш и соль. Входными данными для Rfc2898DeriveBytes являются пароль, размер создаваемой соли и количество итераций хеширования, которые необходимо выполнить. https://msdn.microsoft.com/en-us/library/h83s4e12(v=vs.110).aspx
  2. Затем соль и хеш смешиваются (сначала следует соль, затем хеш) и кодируются в виде строки (поэтому соль кодируется в хеше). Этот закодированный хеш (который содержит соль и хеш) затем сохраняется (обычно) в базе данных против пользователя.

Проверка пароля по хешу

Чтобы проверить пароль, который вводит пользователь.

  1. Соль извлекается из сохраненного хешированного пароля.
  2. Соль используется для хеширования введенного пользователем пароля с использованием перегрузки Rfc2898DeriveBytes, которая принимает соль вместо ее генерации. https://msdn.microsoft.com/en-us/library/yx129kfs(v=vs.110).aspx
  3. Затем сохраненный хэш и тестовый хеш сравниваются.

Хеш

Под покровом хеш генерируется с использованием хеш-функции SHA1 ( https://en.wikipedia.org/wiki/SHA-1). Эта функция итеративно вызывается 1000 раз (в стандартной реализации Identity)

Почему это безопасно

  • Случайные соли означают, что злоумышленник не может использовать предварительно сгенерированную таблицу хэшей, чтобы попытаться взломать пароли. Им нужно будет создать хеш-таблицу для каждой соли. (Предполагая, что хакер также скомпрометировал вашу соль)
  • Если 2 пароля идентичны, они будут иметь разные хэши. (то есть злоумышленники не могут определить "общие" пароли)
  • Итеративный вызов SHA1 1000 раз означает, что злоумышленник также должен сделать это. Идея состоит в том, что, если у них нет времени на суперкомпьютер, у них не будет достаточно ресурсов для взлома пароля из хэша. Это значительно замедлит время создания хеш-таблицы для данной соли.

Для таких, как я, новичок в этом, вот код с const и реальный способ сравнить байты []. Я получил весь этот код из stackru, но определил константы, чтобы значения могли быть изменены, а также

// 24 = 192 bits
    private const int SaltByteSize = 24;
    private const int HashByteSize = 24;
    private const int HasingIterationsCount = 10101;


    public static string HashPassword(string password)
    {
        // http://stackru.com/questions/19957176/asp-net-identity-password-hashing

        byte[] salt;
        byte[] buffer2;
        if (password == null)
        {
            throw new ArgumentNullException("password");
        }
        using (Rfc2898DeriveBytes bytes = new Rfc2898DeriveBytes(password, SaltByteSize, HasingIterationsCount))
        {
            salt = bytes.Salt;
            buffer2 = bytes.GetBytes(HashByteSize);
        }
        byte[] dst = new byte[(SaltByteSize + HashByteSize) + 1];
        Buffer.BlockCopy(salt, 0, dst, 1, SaltByteSize);
        Buffer.BlockCopy(buffer2, 0, dst, SaltByteSize + 1, HashByteSize);
        return Convert.ToBase64String(dst);
    }

    public static bool VerifyHashedPassword(string hashedPassword, string password)
    {
        byte[] _passwordHashBytes;

        int _arrayLen = (SaltByteSize + HashByteSize) + 1;

        if (hashedPassword == null)
        {
            return false;
        }

        if (password == null)
        {
            throw new ArgumentNullException("password");
        }

        byte[] src = Convert.FromBase64String(hashedPassword);

        if ((src.Length != _arrayLen) || (src[0] != 0))
        {
            return false;
        }

        byte[] _currentSaltBytes = new byte[SaltByteSize];
        Buffer.BlockCopy(src, 1, _currentSaltBytes, 0, SaltByteSize);

        byte[] _currentHashBytes = new byte[HashByteSize];
        Buffer.BlockCopy(src, SaltByteSize + 1, _currentHashBytes, 0, HashByteSize);

        using (Rfc2898DeriveBytes bytes = new Rfc2898DeriveBytes(password, _currentSaltBytes, HasingIterationsCount))
        {
            _passwordHashBytes = bytes.GetBytes(SaltByteSize);
        }

        return AreHashesEqual(_currentHashBytes, _passwordHashBytes);

    }

    private static bool AreHashesEqual(byte[] firstHash, byte[] secondHash)
    {
        int _minHashLength = firstHash.Length <= secondHash.Length ? firstHash.Length : secondHash.Length;
        var xor = firstHash.Length ^ secondHash.Length;
        for (int i = 0; i < _minHashLength; i++)
            xor |= firstHash[i] ^ secondHash[i];
        return 0 == xor;
    }

В своем пользовательском ApplicationUserManager вы задаете свойству PasswordHasher имя класса, который содержит приведенный выше код.

Я пишу свой класс PasswordHasher на основе .net6 PasswordHasher docs последней версии (V3)https://github.com/dotnet/aspnetcore/blob/b56bb17db3ae73ce5a8664a2023a9b9af89499dd/src/Identity/Extensions.Core/src/PasswordHasher.cs

      namespace Utilities;

public class PasswordHasher
{
    public const int Pbkdf2Iterations = 1000;


    public static string HashPasswordV3(string password)
    {
        return Convert.ToBase64String(HashPasswordV3(password, RandomNumberGenerator.Create()
            , prf: KeyDerivationPrf.HMACSHA512, iterCount: Pbkdf2Iterations, saltSize: 128 / 8
            , numBytesRequested: 256 / 8));
    }


    public static bool VerifyHashedPasswordV3(string hashedPasswordStr, string password)
    {
        byte[] hashedPassword = Convert.FromBase64String(hashedPasswordStr);
        var iterCount = default(int);
        var prf = default(KeyDerivationPrf);

        try
        {
            // Read header information
            prf = (KeyDerivationPrf)ReadNetworkByteOrder(hashedPassword, 1);
            iterCount = (int)ReadNetworkByteOrder(hashedPassword, 5);
            int saltLength = (int)ReadNetworkByteOrder(hashedPassword, 9);

            // Read the salt: must be >= 128 bits
            if (saltLength < 128 / 8)
            {
                return false;
            }
            byte[] salt = new byte[saltLength];
            Buffer.BlockCopy(hashedPassword, 13, salt, 0, salt.Length);

            // Read the subkey (the rest of the payload): must be >= 128 bits
            int subkeyLength = hashedPassword.Length - 13 - salt.Length;
            if (subkeyLength < 128 / 8)
            {
                return false;
            }
            byte[] expectedSubkey = new byte[subkeyLength];
            Buffer.BlockCopy(hashedPassword, 13 + salt.Length, expectedSubkey, 0, expectedSubkey.Length);

            // Hash the incoming password and verify it
            byte[] actualSubkey = KeyDerivation.Pbkdf2(password, salt, prf, iterCount, subkeyLength);
#if NETSTANDARD2_0 || NETFRAMEWORK
            return ByteArraysEqual(actualSubkey, expectedSubkey);
#elif NETCOREAPP
            return CryptographicOperations.FixedTimeEquals(actualSubkey, expectedSubkey);
#else
#error Update target frameworks
#endif
        }
        catch
        {
            // This should never occur except in the case of a malformed payload, where
            // we might go off the end of the array. Regardless, a malformed payload
            // implies verification failed.
            return false;
        }
    }


    // privates
    private static byte[] HashPasswordV3(string password, RandomNumberGenerator rng, KeyDerivationPrf prf, int iterCount, int saltSize, int numBytesRequested)
    {
        byte[] salt = new byte[saltSize];
        rng.GetBytes(salt);
        byte[] subkey = KeyDerivation.Pbkdf2(password, salt, prf, iterCount, numBytesRequested);
        var outputBytes = new byte[13 + salt.Length + subkey.Length];
        outputBytes[0] = 0x01; // format marker
        WriteNetworkByteOrder(outputBytes, 1, (uint)prf);
        WriteNetworkByteOrder(outputBytes, 5, (uint)iterCount);
        WriteNetworkByteOrder(outputBytes, 9, (uint)saltSize);
        Buffer.BlockCopy(salt, 0, outputBytes, 13, salt.Length);
        Buffer.BlockCopy(subkey, 0, outputBytes, 13 + saltSize, subkey.Length);
        return outputBytes;
    }

    private static void WriteNetworkByteOrder(byte[] buffer, int offset, uint value)
    {
        buffer[offset + 0] = (byte)(value >> 24);
        buffer[offset + 1] = (byte)(value >> 16);
        buffer[offset + 2] = (byte)(value >> 8);
        buffer[offset + 3] = (byte)(value >> 0);
    }

    private static uint ReadNetworkByteOrder(byte[] buffer, int offset)
    {
        return ((uint)(buffer[offset + 0]) << 24)
            | ((uint)(buffer[offset + 1]) << 16)
            | ((uint)(buffer[offset + 2]) << 8)
            | ((uint)(buffer[offset + 3]));
    }

}

Использование в UserController:

      namespace WebApi.Controllers.UserController;

[Route("api/[controller]/[action]")]
[ApiController]
public class UserController : ControllerBase
{
    private readonly IUserService _userService;
    public UserController(IUserService userService)
    {
        _userService = userService;
    }


[HttpPost]
public async Task<IActionResult> Register(VmRegister model)
{
    var user = new User
    {
        UserName = model.UserName,
        PasswordHash = PasswordHasher.HashPasswordV3(model.Password),
        FirstName = model.FirstName,
        LastName = model.LastName,
        Mobile = model.Mobile,
        Email = model.Email,
    };
    await _userService.Add(user);
    return StatusCode(201, user.Id);
}


[HttpPost]
public async Task<IActionResult> Login(VmLogin model)
{
    var user = await _userService.GetByUserName(model.UserName);

    if (user is null || !PasswordHasher.VerifyHashedPasswordV3(user.PasswordHash, model.Password))
        throw new Exception("The UserName or Password is wrong.");
    // generate token
    return Ok();
}

}

Следуя ответу Андрея Савиных , я внес следующие изменения. Я использую Dapper с существующей БД, настроенной с помощью AspNet Identity.

Обратите внимание, чтоPasswordHasherCompatibilityMode.IdentityV2отлично работает, если вы используете AspNet Identity. Еще не тестировался для AspNetCore Identity.

Вот GitHub Gist для полного класса.

Другие вопросы по тегам