Атрибуция каналов (модель цепей Маркова) в Python
Как сделать атрибуцию каналов (модель цепей Маркова) в Python? Как у нас есть пакет 'ChannelAttribution' в R.
0 ответов
Я написал код на Python для многоканальной модели атрибуции. https://www.linkedin.com/pulse/multi-channel-attribution-model-python-sheranga-gamwasam/
Вот ссылка на набор данных:https://docs.google.com/spreadsheets/d/11pa-eQDHEX63uSEA4eWiDTOZ7lbO6Vwt-dHkuhuhbSo/edit?usp=sharing
import time
import pandas as pd
import numpy as np
import collections
from itertools import chain
import itertools
from scipy.stats import stats
import statistics
def unique(list1):
unique_list = []
for x in list1:
if x not in unique_list:
unique_list.append(x)
return(unique_list)
def split_fun(path):
return path.split('>')
def calculate_rank(vector):
a={}
rank=0
for num in sorted(vector):
if num not in a:
a[num]=rank
rank=rank+1
return[a[i] for i in vector]
def transition_matrix_func(import_data):
z_import_data=import_data.copy()
z_import_data['path1']='start>'+z_import_data['path']
z_import_data['path2']=z_import_data['path1']+'>convert'
z_import_data['pair']=z_import_data['path2'].apply(split_fun)
zlist=z_import_data['pair'].tolist()
zlist=list(chain.from_iterable(zlist))
zlist=list(map(str.strip, zlist))
T=calculate_rank(zlist)
M = [[0]*len(unique(zlist)) for _ in range(len(unique(zlist)))]
for (i,j) in zip(T,T[1:]):
M[i][j] += 1
x_df=pd.DataFrame(M)
np.fill_diagonal(x_df.values,0)
x_df=pd.DataFrame(x_df.values/x_df.values.sum(axis=1)[:,None])
x_df.columns=sorted(unique(zlist))
x_df['index']=sorted(unique(zlist))
x_df.set_index("index", inplace = True)
x_df.loc['convert',:]=0
return(x_df)
def simulation(trans,n):
sim=['']*n
sim[0]= 'start'
i=1
while i<n:
sim[i] = np.random.choice(trans.columns, 1, p=trans.loc[sim[i-1],:])[0]
if sim[i]=='convert':
break
i=i+1
return sim[0:i+1]
def markov_chain(data_set,no_iteration=10,no_of_simulation=10000,alpha=5):
import_dataset_v1=data_set.copy()
import_dataset_v1=(import_dataset_v1.reindex(import_dataset_v1.index.repeat(import_dataset_v1.conversions))).reset_index()
import_dataset_v1['conversions']=1
import_dataset_v1=import_dataset_v1[['path','conversions']]
import_dataset=(import_dataset_v1.groupby(['path']).sum()).reset_index()
import_dataset['probability']=import_dataset['conversions']/import_dataset['conversions'].sum()
final=pd.DataFrame()
for k in range(0,no_iteration):
start = time.time()
import_data=pd.DataFrame({'path':np.random.choice(import_dataset['path'],size=import_dataset['conversions'].sum(),p=import_dataset['probability'],replace=True)})
import_data['conversions']=1
tr_matrix=transition_matrix_func(import_data)
channel_only = list(filter(lambda k0: k0 not in ['start','convert'], tr_matrix.columns))
ga_ex=pd.DataFrame()
tr_mat=tr_matrix.copy()
p=[]
i=0
while i<no_of_simulation:
p.append(unique(simulation(tr_mat,1000)))
i=i+1
path=list(itertools.chain.from_iterable(p))
counter=collections.Counter(path)
df=pd.DataFrame({'path':list(counter.keys()),'count':list(counter.values())})
df=df[['path','count']]
ga_ex=ga_ex.append(df,ignore_index=True)
df1=(pd.DataFrame(ga_ex.groupby(['path'])[['count']].sum())).reset_index()
df1['removal_effects']=df1['count']/len(path)
#df1['removal_effects']=df1['count']/sum(df1['count'][df1['path']=='convert'])
df1=df1[df1['path'].isin(channel_only)]
df1['ass_conversion']=df1['removal_effects']/sum(df1['removal_effects'])
df1['ass_conversion']=df1['ass_conversion']*sum(import_dataset['conversions'])
final=final.append(df1,ignore_index=True)
end = time.time()
t1=(end - start)
print(t1)
'''
H0: u=0
H1: u>0
'''
unique_channel=unique(final['path'])
#final=(pd.DataFrame(final.groupby(['path'])[['ass_conversion']].mean())).reset_index()
final_df=pd.DataFrame()
for i in range(0,len(unique_channel)):
x=(final['ass_conversion'][final['path']==unique_channel[i]]).values
final_df.loc[i,0]=unique_channel[i]
final_df.loc[i,1]=x.mean()
v=stats.ttest_1samp(x,0)
final_df.loc[i,2]=v[1]/2
if v[1]/2<=alpha/100:
final_df.loc[i,3]=str(100-alpha)+'% statistically confidence'
else:
final_df.loc[i,3]=str(100-alpha)+'% statistically not confidence'
final_df.loc[i,4]=len(x)
final_df.loc[i,5]=statistics.stdev(x)
final_df.loc[i,6]=v[0]
final_df.columns=['channel','ass_conversion','p_value','confidence_status','frequency','standard_deviation','t_statistics']
final_df['ass_conversion']=sum(import_dataset['conversions']) *final_df['ass_conversion'] /sum(final_df['ass_conversion'])
return final_df,final
import_dataset=pd.read_csv('channel attribution example.csv')
data,dataset=markov_chain(import_dataset,no_iteration=10,no_of_simulation=10000,alpha=5)