Выбор определенных строк и столбцов из массива NumPy

Я схожу с ума, пытаясь понять, какую глупость я делаю здесь неправильно.

Я использую NumPy, и у меня есть конкретные индексы строк и конкретные индексы столбцов, из которых я хочу выбрать. Вот суть моей проблемы:

import numpy as np

a = np.arange(20).reshape((5,4))
# array([[ 0,  1,  2,  3],
#        [ 4,  5,  6,  7],
#        [ 8,  9, 10, 11],
#        [12, 13, 14, 15],
#        [16, 17, 18, 19]])

# If I select certain rows, it works
print a[[0, 1, 3], :]
# array([[ 0,  1,  2,  3],
#        [ 4,  5,  6,  7],
#        [12, 13, 14, 15]])

# If I select certain rows and a single column, it works
print a[[0, 1, 3], 2]
# array([ 2,  6, 14])

# But if I select certain rows AND certain columns, it fails
print a[[0,1,3], [0,2]]
# Traceback (most recent call last):
#   File "<stdin>", line 1, in <module>
# ValueError: shape mismatch: objects cannot be broadcast to a single shape

Почему это происходит? Конечно, я должен иметь возможность выбрать 1-й, 2-й и 4-й строки, а также 1-й и 3-й столбцы? Результат, который я ожидаю, таков:

a[[0,1,3], [0,2]] => [[0,  2],
                      [4,  6],
                      [12, 14]]

3 ответа

Решение

Необычное индексирование требует, чтобы вы предоставили все индексы для каждого измерения. Вы предоставляете 3 индекса для первого и только 2 для второго, следовательно, ошибка. Вы хотите сделать что-то вроде этого:

>>> a[[[0, 0], [1, 1], [3, 3]], [[0,2], [0,2], [0, 2]]]
array([[ 0,  2],
       [ 4,  6],
       [12, 14]])

Это, конечно, боль писать, поэтому вы можете позволить вещанию помочь вам:

>>> a[[[0], [1], [3]], [0, 2]]
array([[ 0,  2],
       [ 4,  6],
       [12, 14]])

Это гораздо проще сделать, если вы индексируете с помощью массивов, а не списков:

>>> row_idx = np.array([0, 1, 3])
>>> col_idx = np.array([0, 2])
>>> a[row_idx[:, None], col_idx]
array([[ 0,  2],
       [ 4,  6],
       [12, 14]])

Как предлагает Тоан, простой способ взломать - сначала выбрать строки, а затем выбрать столбцы поверх них.

>>> a[[0,1,3], :]            # Returns the rows you want
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [12, 13, 14, 15]])
>>> a[[0,1,3], :][:, [0,2]]  # Selects the columns you want as well
array([[ 0,  2],
       [ 4,  6],
       [12, 14]])

[Редактировать] Встроенный метод: np.ix_

Недавно я обнаружил, что numpy дает вам встроенный однострочный текст для выполнения именно того , что предлагает @Jaime, но без необходимости использовать синтаксис широковещания (который страдает от недостатка читабельности). Из документов:

Используя ix_, можно быстро создать индексные массивы, которые будут индексировать перекрестный продукт. a[np.ix_([1,3],[2,5])] возвращает массив [[a[1,2] a[1,5]], [a[3,2] a[3,5]]],

Итак, вы используете это так:

>>> a = np.arange(20).reshape((5,4))
>>> a[np.ix_([0,1,3], [0,2])]
array([[ 0,  2],
       [ 4,  6],
       [12, 14]])

И способ, которым это работает, состоит в том, что он заботится о выравнивании массивов, как предложил Хайме, чтобы вещание происходило правильно:

>>> np.ix_([0,1,3], [0,2])
(array([[0],
        [1],
        [3]]), array([[0, 2]]))

Кроме того, как говорит MikeC в комментарии, np.ix_ имеет преимущество в том, что возвращает представление, чего не было в моем первом (до редактирования) ответе. Это означает, что теперь вы можете назначить индексированный массив:

>>> a[np.ix_([0,1,3], [0,2])] = -1
>>> a    
array([[-1,  1, -1,  3],
       [-1,  5, -1,  7],
       [ 8,  9, 10, 11],
       [-1, 13, -1, 15],
       [16, 17, 18, 19]])

ОБЛАСТЬ ПРИМЕНЕНИЯ:

 >>> a[[0,1,3]][:,[0,2]]
array([[ 0,  2],
   [ 4,  6],
   [12, 14]])

ИЛИ ЖЕ:

>>> a[[0,1,3],::2]
array([[ 0,  2],
   [ 4,  6],
   [12, 14]])

С помощью np.ix_ - самый удобный способ сделать это (как ответили другие), но вот еще один интересный способ сделать это:

>>> rows = [0, 1, 3]
>>> cols = [0, 2]

>>> a[rows].T[cols].T

array([[ 0,  2],
       [ 4,  6],
       [12, 14]])

np.ix_ делает вычитание матрицы намного проще! Однако мне все еще было любопытно узнать о принятом ответе и хочу знать, почему этот синтаксис работает. Подумав об этом, думаю, у меня есть подсказки. Также здесь я отвечаю на вопрос @Aetos. Чтобы иметь лучшую иллюстрацию, я использую изображение здесь, введите описание изображения здесь. Надеюсь, это поможет.

Другие вопросы по тегам