R Stargazer с моделью pglm - преобразование биноминальной модели pglm в модель plm

Я использую stargazer создать мои сводные таблицы plm.

library(plm)
library(pglm)
data("Unions", package = "pglm")
anb1 <- plm(wage ~ union + exper + rural, Unions, model = "random", method = "bfgs")
stargazer(anb1)

К сожалению, Stargazer не поддерживает модели pglm. Я ищу решение о том, как построить результаты модели pglm с двоичной зависимой переменной, так как следующий вызов stargazer не работает с моделями pglm.

anb2 <- pglm(union ~ wage + exper + rural, Unions, family = "binomial",
            model = "random", method = "bfgs")
stargazer(anb2)

Любая альтернатива, чтобы просто извлечь каждый элемент резюме и чем отформатировать его соответственно? Класс результата:

[1] "maxLik", "максим", "список"

4 ответа

Решение

Вот простая функция извлечения, чтобы заставить texreg работать с pglm:

extract.pglm <- function (model, include.nobs = TRUE, include.loglik = TRUE, ...) {
   s <- summary(model, ...)
   coefficient.names <- rownames(s$estimate)
   coefficients <- s$estimate[, 1]
   standard.errors <- s$estimate[, 2]
   significance <- s$estimate[, 4]
   loglik.value <- s$loglik
   n <- nrow(model$model)
   gof <- numeric()
   gof.names <- character()
   gof.decimal <- logical()
   if (include.loglik == TRUE) {
      gof <- c(gof, loglik.value)
      gof.names <- c(gof.names, "Log-Likelihood")
      gof.decimal <- c(gof.decimal, TRUE)
   }
   if (include.nobs == TRUE) {
      gof <- c(gof, n)
      gof.names <- c(gof.names, "Num. obs.")
      gof.decimal <- c(gof.decimal, FALSE)
   }
   tr <- createTexreg(coef.names = coefficient.names, coef = coefficients, 
                 se = standard.errors, pvalues = significance, gof.names = gof.names, 
                 gof = gof, gof.decimal = gof.decimal)
   return(tr)
}

Для того, чтобы этот код работал, вы также должны зарегистрировать функцию, чтобы она обрабатывала pglm. maxLik объекты по умолчанию, когда extract называется:

setMethod("extract", signature = className("maxLik", "maxLik"), 
      definition = extract.pglm)

После этого вы можете использовать texreg с pglm так же, как с plm или другими моделями, поддерживаемыми texreg.

Вот гораздо более простое решение. Stargazer по-прежнему не поддерживает pglm по состоянию на 25.06.2019, но coeftest делает это, просто передает модель Stargazer через coeftest.

(Также обратите внимание на изменение имени объекта данных в pglm после @giamcomo)

library(plm)
library(pglm)
library(lmtest)
library(stargazer)
data("UnionWage", package = "pglm")

anb2 <- pglm(union ~ wage + exper + rural, UnionWage, family = "binomial",
             model = "random", method = "bfgs")

stargazer(anb2)

summary(anb2)

stargazer(coeftest(anb2), type="text")

Вот результат

> stargazer(anb2)

% Error: Unrecognized object type.
> 
> summary(anb2)
--------------------------------------------
Maximum Likelihood estimation
BFGS maximization, 35 iterations
Return code 0: successful convergence 
Log-Likelihood: -1655.034 
5  free parameters
Estimates:
            Estimate Std. error t value  Pr(> t)    
(Intercept) -3.43651    0.29175 -11.779  < 2e-16 ***
wage         0.82896    0.15014   5.521 3.37e-08 ***
exper       -0.06590    0.02318  -2.843  0.00447 ** 
ruralyes     0.07558    0.24866   0.304  0.76116    
sigma        4.26050    0.22606  18.847  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
--------------------------------------------
> 
> stargazer(coeftest(anb2), type="text")

====================================
             Dependent variable:    
         ---------------------------

------------------------------------
wage               0.83***          
                   (0.15)           
exper             -0.07***          
                   (0.02)           
ruralyes            0.08            
                   (0.25)           
sigma              4.26***          
                   (0.23)           
Constant          -3.44***          
                   (0.29)           
====================================
====================================
Note:    *p<0.1; **p<0.05; ***p<0.01
> 

Новая версия texreg (1.36.24) доступна на GitHub (скоро на CRAN), и был добавлен класс pglm.

Другое возможное (но не вполне удовлетворительное) решение.

library(plm)
library(pglm)
library(stargazer)
data("Unions", package = "pglm")

anb2 <- pglm(union ~ wage + exper + rural, Unions, family = "binomial",
            model = "random", method = "bfgs")

# A "fake" model
anb0 <- plm(union ~ wage + exper + rural, Unions, family = "binomial",
            model = "random", method = "bfgs")

tstats <- summary(anb2)$estimate[,3][-5]
pvs <- summary(anb2)$estimate[,4][-5]
SEs <- summary(anb2)$estimate[,2][-5]
coefs <- summary(anb2)$estimate[,1][-5]

stargazer(anb0, type="text", coef=list(coefs), se=list(SEs),
 p = list(pvs), omit.stat="all")

Вот таблица, сгенерированная stargazer:

====================================
             Dependent variable:    
         ---------------------------
                    union           
------------------------------------
wage              0.122***          
                   (0.024)          

exper             -0.058**          
                   (0.023)          

ruralyes            0.092           
                   (0.249)          

Constant          -2.857***         
                   (0.235)          

====================================
====================================
Note:    *p<0.1; **p<0.05; ***p<0.01

Одним из возможных решений является следующее.

anb2 <- pglm(union ~ wage + exper + rural, Unions, family = "binomial",
         model = "random", method = "bfgs")
model = summary(anb2)

Загрузите или установите следующие библиотеки

 library(dplyr)
 library(xtable)
 library('gtools')

Создайте вектор с именем ко-вариаций

var = c('Intercept', 'wage', 'exper', 'ruralyes', 'sigma')

Тогда делай

 model_summary = model$estimate %>% as.data.frame() %>% 
 mutate(term = var, Estimate = round(Estimate, 2), SE = round(`Std. error`, 2), p.value = stars.pval(`Pr(> t)`)) %>% 
 select(term, Estimate, SE, p.value)

 > model_summary
        term Estimate   SE p.value
 1 Intercept    -2.86 0.23     ***
 2      wage     0.12 0.02     ***
 3     exper    -0.06 0.02       *
 4  ruralyes     0.09 0.25        
 5     sigma     4.30 0.23     ***

Тогда вы можете использовать xtable на data.frame

 library(xtable)
 xtable(model_summary)
Другие вопросы по тегам