Максимальный поддерживаемый размер для библиотеки cub
Кто-нибудь знает, какой максимальный поддерживаемый размер для cub::scan? Я получил дамп ядра для входных размеров более 500 миллионов. Я хотел убедиться, что я не делаю ничего плохого...
Вот мой код:
#define CUB_STDERR
#include <stdio.h>
#include "cub/util_allocator.cuh"
#include "cub/device/device_scan.cuh"
#include <sys/time.h>
using namespace cub;
bool g_verbose = false; // Whether to display input/output to console
CachingDeviceAllocator g_allocator(true); // Caching allocator for device memory
typedef int mytype;
/**
* Solve inclusive-scan problem
*/
static void solve(mytype *h_in, mytype *h_cpu, int n)
{
mytype inclusive = 0;
for (int i = 0; i < n; ++i) {
inclusive += h_in[i];
h_cpu[i] = inclusive;
}
}
static int compare(mytype *h_cpu, mytype *h_o, int n)
{
for (int i = 0; i < n; i++) {
if (h_cpu[i] != h_o[i]) {
return i + 1;
}
}
return 0;
}
/**
* Main
*/
int main(int argc, char** argv)
{
cudaSetDevice(0);
struct timeval start, end;
int num_items = 1073741824;
const int repetitions = 5;
mytype *h_in, *h_out, *h_cpu;
const int size = num_items * sizeof(mytype);
// Allocate host arrays
h_in = (mytype *)malloc(size);
h_out = (mytype *)malloc(size);
h_cpu = (mytype *)malloc(size);
// Initialize problem and solution
for (int i = 0; i < num_items; i++) {
h_in[i] = i;
h_out[i] = 0;
h_cpu[i] = 0;
}
solve(h_in, h_cpu, num_items);
// Allocate problem device arrays
mytype *d_in = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_in, sizeof(mytype) * num_items));
// Initialize device input
CubDebugExit(cudaMemcpy(d_in, h_in, sizeof(mytype) * num_items, cudaMemcpyHostToDevice));
// Allocate device output array
mytype *d_out = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_out, sizeof(mytype) * num_items));
// Allocate temporary storage
void *d_temp_storage = NULL;
size_t temp_storage_bytes = 0;
CubDebugExit(DeviceScan::InclusiveSum(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items));
CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes));
// Run
gettimeofday(&start, NULL);
for (long i = 0; i < repetitions; i++)
DeviceScan::InclusiveSum(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
cudaThreadSynchronize();
gettimeofday(&end, NULL);
double ctime = end.tv_sec + end.tv_usec / 1000000.0 - start.tv_sec - start.tv_usec / 1000000.0;
cudaMemcpy(h_out, d_out, sizeof(mytype) * num_items, cudaMemcpyDeviceToHost);
int cmp = compare(h_cpu, h_out, num_items);
printf("%d\t", num_items);
if (!cmp)
printf("\t%7.4fs \n", ctime);
printf("\n");
if (h_in) delete[] h_in;
if (h_out) delete[] h_out;
if (h_cpu) delete[] h_cpu;
if (d_in) CubDebugExit(g_allocator.DeviceFree(d_in));
if (d_out) CubDebugExit(g_allocator.DeviceFree(d_out));
if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage));
printf("\n\n");
return 0;
}
1 ответ
Проблема здесь:
const int size = num_items * sizeof(mytype);
И это можно исправить, изменив его на:
const size_t size = num_items * sizeof(mytype);
Значение num_items
в коде более 1 млрд. Когда мы умножаем это на sizeof(mytype)
мы умножаем это на 4, так что результат составляет более 4 миллиардов. Это значение не может быть сохранено в int
переменная. Если вы попытаетесь использовать его так или иначе, то ваш последующий код хоста будет делать плохие вещи. Эта проблема (дамп ядра) на самом деле не имеет ничего общего с CUDA. Код выгрузит ядро, если вы удалите все элементы CUB.
Когда я изменяю строку кода выше, и компилирую для правильного графического процессора (например, -arch=sm_35
в моем случае или -arch=sm_52
для Titan X GPU), тогда я получаю правильный ответ (и нет ошибки сегмента / дамп ядра).
В общем, правильной отправной точкой при погоне за ошибкой сегмента / ошибкой типа дампа ядра является признание того, что эта ошибка возникает из кода хоста, и вы должны попытаться локализовать точную строку исходного кода, которая генерирует эту ошибку. Это можно сделать тривиально / утомительно, поставив много printf
операторы в вашем коде, пока вы не идентифицируете строку своего кода, после которой вы не видите вывод printf, или с помощью отладчика кода хоста, такого как gdb на linux.
Также обратите внимание, что для написания этого кода потребуется чуть более 12 ГБ памяти на хосте и чуть более 8 ГБ памяти на GPU, поэтому он будет правильно работать только при таких настройках.
Для справки вот фиксированный код (в зависимости от того, какой ОП выложен здесь):
#define CUB_STDERR
#include <stdio.h>
#include "cub/util_allocator.cuh"
#include "cub/device/device_scan.cuh"
#include <sys/time.h>
using namespace cub;
bool g_verbose = false; // Whether to display input/output to console
CachingDeviceAllocator g_allocator(true); // Caching allocator for device memory
typedef int mytype;
/**
* Solve inclusive-scan problem
*/
static void solve(mytype *h_in, mytype *h_cpu, int n)
{
mytype inclusive = 0;
for (int i = 0; i < n; ++i) {
inclusive += h_in[i];
h_cpu[i] = inclusive;
}
}
static int compare(mytype *h_cpu, mytype *h_o, int n)
{
for (int i = 0; i < n; i++) {
if (h_cpu[i] != h_o[i]) {
return i + 1;
}
}
return 0;
}
/**
* Main
*/
int main(int argc, char** argv)
{
cudaSetDevice(0);
struct timeval start, end;
int num_items = 1073741824;
const int repetitions = 5;
mytype *h_in, *h_out, *h_cpu;
const size_t size = num_items * sizeof(mytype);
// Allocate host arrays
h_in = (mytype *)malloc(size);
h_out = (mytype *)malloc(size);
h_cpu = (mytype *)malloc(size);
// Initialize problem and solution
for (int i = 0; i < num_items; i++) {
h_in[i] = i;
h_out[i] = 0;
h_cpu[i] = 0;
}
solve(h_in, h_cpu, num_items);
// Allocate problem device arrays
mytype *d_in = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_in, sizeof(mytype) * num_items));
// Initialize device input
CubDebugExit(cudaMemcpy(d_in, h_in, sizeof(mytype) * num_items, cudaMemcpyHostToDevice));
// Allocate device output array
mytype *d_out = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_out, sizeof(mytype) * num_items));
// Allocate temporary storage
void *d_temp_storage = NULL;
size_t temp_storage_bytes = 0;
CubDebugExit(DeviceScan::InclusiveSum(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items));
CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes));
// Run
gettimeofday(&start, NULL);
for (long i = 0; i < repetitions; i++)
DeviceScan::InclusiveSum(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
cudaThreadSynchronize();
gettimeofday(&end, NULL);
double ctime = end.tv_sec + end.tv_usec / 1000000.0 - start.tv_sec - start.tv_usec / 1000000.0;
cudaMemcpy(h_out, d_out, sizeof(mytype) * num_items, cudaMemcpyDeviceToHost);
int cmp = compare(h_cpu, h_out, num_items);
printf("%d\t", num_items);
if (!cmp)
printf("\t%7.4fs \n", ctime);
printf("\n");
if (h_in) delete[] h_in;
if (h_out) delete[] h_out;
if (h_cpu) delete[] h_cpu;
if (d_in) CubDebugExit(g_allocator.DeviceFree(d_in));
if (d_out) CubDebugExit(g_allocator.DeviceFree(d_out));
if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage));
printf("\n\n");
return 0;
}