Объединение данных - ошибка в fix.by(by.x, x)

Я пытаюсь объединить данные в R, как это предлагается в ответе на мой другой пост здесь. Тем не менее, у меня есть ошибка.

Сначала позвольте мне объяснить, что я пытаюсь сделать. У меня есть 100 файлов (у каждого есть x_i и y_i), я хочу объединить их следующим образом:

от:

x1; y1  ; x2 ; y2
1 ; 100 ; 1  ; 150
4 ; 90  ; 2  ; 85
7 ; 85  ; 10 ; 60
10; 80  ;

в

x1; y1  ; x2 ; y2
1 ; 100 ; 1  ; 150
2 ; 100 ; 2  ; 85
4 ; 90  ; 4  ; 85
7 ; 85  ; 7  ; 85
10; 80  ;10 ; 60

Простой скрипт отлично работает на игрушечном примере:

xx <- read.table(text='x1; y1  ; x2 ; y2
1 ; 100 ; 1  ; 150
4 ; 90  ; 2  ; 85
7 ; 85  ; 10 ; 60
10; 80  ;',sep=';',fill=TRUE,header=TRUE)

dm <- merge(xx[,1:2],xx[,3:4],by=1,all=T)
dm <- dm[!is.na(dm$x1),]
dm$y1 <- zoo::na.locf(dm$y1)
dm$y2 <- zoo::na.locf(dm$y2)
dm
  x1  y1  y2
1  1 100 150
2  2 100  85
3  4  90  85
4  7  85  85
5 10  80  60

Теперь о моих реальных данных. Я изменил скрипт так, чтобы он выглядел так, но я получаю ошибку:

library(zoo)

data    1    = read.table("rundata  1", sep= " ", col.names=c("tm   1","score   1","current 1"))
data    2    = read.table("rundata  2", sep= " ", col.names=c("tm   2","score   2","current 2"))
data    3    = read.table("rundata  3", sep= " ", col.names=c("tm   3","score   3","current 3"))
data    4    = read.table("rundata  4", sep= " ", col.names=c("tm   4","score   4","current 4"))
data    5    = read.table("rundata  5", sep= " ", col.names=c("tm   5","score   5","current 5"))
data    6    = read.table("rundata  6", sep= " ", col.names=c("tm   6","score   6","current 6"))
data    7    = read.table("rundata  7", sep= " ", col.names=c("tm   7","score   7","current 7"))
data    8    = read.table("rundata  8", sep= " ", col.names=c("tm   8","score   8","current 8"))
data    9    = read.table("rundata  9", sep= " ", col.names=c("tm   9","score   9","current 9"))
data    10   = read.table("rundata  10", sep= " ", col.names=c("tm  10","score  10","current    10"))
data    11   = read.table("rundata  11", sep= " ", col.names=c("tm  11","score  11","current    11"))
data    12   = read.table("rundata  12", sep= " ", col.names=c("tm  12","score  12","current    12"))
data    13   = read.table("rundata  13", sep= " ", col.names=c("tm  13","score  13","current    13"))
data    14   = read.table("rundata  14", sep= " ", col.names=c("tm  14","score  14","current    14"))
data    15   = read.table("rundata  15", sep= " ", col.names=c("tm  15","score  15","current    15"))
data    16   = read.table("rundata  16", sep= " ", col.names=c("tm  16","score  16","current    16"))
data    17   = read.table("rundata  17", sep= " ", col.names=c("tm  17","score  17","current    17"))
data    18   = read.table("rundata  18", sep= " ", col.names=c("tm  18","score  18","current    18"))
data    19   = read.table("rundata  19", sep= " ", col.names=c("tm  19","score  19","current    19"))
data    20   = read.table("rundata  20", sep= " ", col.names=c("tm  20","score  20","current    20"))
data    21   = read.table("rundata  21", sep= " ", col.names=c("tm  21","score  21","current    21"))
data    22   = read.table("rundata  22", sep= " ", col.names=c("tm  22","score  22","current    22"))
data    23   = read.table("rundata  23", sep= " ", col.names=c("tm  23","score  23","current    23"))
data    24   = read.table("rundata  24", sep= " ", col.names=c("tm  24","score  24","current    24"))
data    25   = read.table("rundata  25", sep= " ", col.names=c("tm  25","score  25","current    25"))
data    26   = read.table("rundata  26", sep= " ", col.names=c("tm  26","score  26","current    26"))
data    27   = read.table("rundata  27", sep= " ", col.names=c("tm  27","score  27","current    27"))
data    28   = read.table("rundata  28", sep= " ", col.names=c("tm  28","score  28","current    28"))
data    29   = read.table("rundata  29", sep= " ", col.names=c("tm  29","score  29","current    29"))
data    30   = read.table("rundata  30", sep= " ", col.names=c("tm  30","score  30","current    30"))
data    31   = read.table("rundata  31", sep= " ", col.names=c("tm  31","score  31","current    31"))
data    32   = read.table("rundata  32", sep= " ", col.names=c("tm  32","score  32","current    32"))
data    33   = read.table("rundata  33", sep= " ", col.names=c("tm  33","score  33","current    33"))
data    34   = read.table("rundata  34", sep= " ", col.names=c("tm  34","score  34","current    34"))
data    35   = read.table("rundata  35", sep= " ", col.names=c("tm  35","score  35","current    35"))
data    36   = read.table("rundata  36", sep= " ", col.names=c("tm  36","score  36","current    36"))
data    37   = read.table("rundata  37", sep= " ", col.names=c("tm  37","score  37","current    37"))
data    38   = read.table("rundata  38", sep= " ", col.names=c("tm  38","score  38","current    38"))
data    39   = read.table("rundata  39", sep= " ", col.names=c("tm  39","score  39","current    39"))
data    40   = read.table("rundata  40", sep= " ", col.names=c("tm  40","score  40","current    40"))
data    41   = read.table("rundata  41", sep= " ", col.names=c("tm  41","score  41","current    41"))
data    42   = read.table("rundata  42", sep= " ", col.names=c("tm  42","score  42","current    42"))
data    43   = read.table("rundata  43", sep= " ", col.names=c("tm  43","score  43","current    43"))
data    44   = read.table("rundata  44", sep= " ", col.names=c("tm  44","score  44","current    44"))
data    45   = read.table("rundata  45", sep= " ", col.names=c("tm  45","score  45","current    45"))
data    46   = read.table("rundata  46", sep= " ", col.names=c("tm  46","score  46","current    46"))
data    47   = read.table("rundata  47", sep= " ", col.names=c("tm  47","score  47","current    47"))
data    48   = read.table("rundata  48", sep= " ", col.names=c("tm  48","score  48","current    48"))
data    49   = read.table("rundata  49", sep= " ", col.names=c("tm  49","score  49","current    49"))
data    50   = read.table("rundata  50", sep= " ", col.names=c("tm  50","score  50","current    50"))
data    51   = read.table("rundata  51", sep= " ", col.names=c("tm  51","score  51","current    51"))
data    52   = read.table("rundata  52", sep= " ", col.names=c("tm  52","score  52","current    52"))
data    53   = read.table("rundata  53", sep= " ", col.names=c("tm  53","score  53","current    53"))
data    54   = read.table("rundata  54", sep= " ", col.names=c("tm  54","score  54","current    54"))
data    55   = read.table("rundata  55", sep= " ", col.names=c("tm  55","score  55","current    55"))
data    56   = read.table("rundata  56", sep= " ", col.names=c("tm  56","score  56","current    56"))
data    57   = read.table("rundata  57", sep= " ", col.names=c("tm  57","score  57","current    57"))
data    58   = read.table("rundata  58", sep= " ", col.names=c("tm  58","score  58","current    58"))
data    59   = read.table("rundata  59", sep= " ", col.names=c("tm  59","score  59","current    59"))
data    60   = read.table("rundata  60", sep= " ", col.names=c("tm  60","score  60","current    60"))
data    61   = read.table("rundata  61", sep= " ", col.names=c("tm  61","score  61","current    61"))
data    62   = read.table("rundata  62", sep= " ", col.names=c("tm  62","score  62","current    62"))
data    63   = read.table("rundata  63", sep= " ", col.names=c("tm  63","score  63","current    63"))
data    64   = read.table("rundata  64", sep= " ", col.names=c("tm  64","score  64","current    64"))
data    65   = read.table("rundata  65", sep= " ", col.names=c("tm  65","score  65","current    65"))
data    66   = read.table("rundata  66", sep= " ", col.names=c("tm  66","score  66","current    66"))
data    67   = read.table("rundata  67", sep= " ", col.names=c("tm  67","score  67","current    67"))
data    68   = read.table("rundata  68", sep= " ", col.names=c("tm  68","score  68","current    68"))
data    69   = read.table("rundata  69", sep= " ", col.names=c("tm  69","score  69","current    69"))
data    70   = read.table("rundata  70", sep= " ", col.names=c("tm  70","score  70","current    70"))
data    71   = read.table("rundata  71", sep= " ", col.names=c("tm  71","score  71","current    71"))
data    72   = read.table("rundata  72", sep= " ", col.names=c("tm  72","score  72","current    72"))
data    73   = read.table("rundata  73", sep= " ", col.names=c("tm  73","score  73","current    73"))
data    74   = read.table("rundata  74", sep= " ", col.names=c("tm  74","score  74","current    74"))
data    75   = read.table("rundata  75", sep= " ", col.names=c("tm  75","score  75","current    75"))
data    76   = read.table("rundata  76", sep= " ", col.names=c("tm  76","score  76","current    76"))
data    77   = read.table("rundata  77", sep= " ", col.names=c("tm  77","score  77","current    77"))
data    78   = read.table("rundata  78", sep= " ", col.names=c("tm  78","score  78","current    78"))
data    79   = read.table("rundata  79", sep= " ", col.names=c("tm  79","score  79","current    79"))
data    80   = read.table("rundata  80", sep= " ", col.names=c("tm  80","score  80","current    80"))
data    81   = read.table("rundata  81", sep= " ", col.names=c("tm  81","score  81","current    81"))
data    82   = read.table("rundata  82", sep= " ", col.names=c("tm  82","score  82","current    82"))
data    83   = read.table("rundata  83", sep= " ", col.names=c("tm  83","score  83","current    83"))
data    84   = read.table("rundata  84", sep= " ", col.names=c("tm  84","score  84","current    84"))
data    85   = read.table("rundata  85", sep= " ", col.names=c("tm  85","score  85","current    85"))
data    86   = read.table("rundata  86", sep= " ", col.names=c("tm  86","score  86","current    86"))
data    87   = read.table("rundata  87", sep= " ", col.names=c("tm  87","score  87","current    87"))
data    88   = read.table("rundata  88", sep= " ", col.names=c("tm  88","score  88","current    88"))
data    89   = read.table("rundata  89", sep= " ", col.names=c("tm  89","score  89","current    89"))
data    90   = read.table("rundata  90", sep= " ", col.names=c("tm  90","score  90","current    90"))
data    91   = read.table("rundata  91", sep= " ", col.names=c("tm  91","score  91","current    91"))
data    92   = read.table("rundata  92", sep= " ", col.names=c("tm  92","score  92","current    92"))
data    93   = read.table("rundata  93", sep= " ", col.names=c("tm  93","score  93","current    93"))
data    94   = read.table("rundata  94", sep= " ", col.names=c("tm  94","score  94","current    94"))
data    95   = read.table("rundata  95", sep= " ", col.names=c("tm  95","score  95","current    95"))
data    96   = read.table("rundata  96", sep= " ", col.names=c("tm  96","score  96","current    96"))
data    97   = read.table("rundata  97", sep= " ", col.names=c("tm  97","score  97","current    97"))
data    98   = read.table("rundata  98", sep= " ", col.names=c("tm  98","score  98","current    98"))
data    99   = read.table("rundata  99", sep= " ", col.names=c("tm  99","score  99","current    99"))
data    100  = read.table("rundata  100", sep= " ", col.names=c("tm 100","score 100","current   100"))

-> отлично работает

newdata<- merge(    
data1   [,1:2],
data2   [,1:2],
data3   [,1:2],
data4   [,1:2],
data5   [,1:2],
data6   [,1:2],
data7   [,1:2],
data8   [,1:2],
data9   [,1:2],
data10  [,1:2],
data11  [,1:2],
data12  [,1:2],
data13  [,1:2],
data14  [,1:2],
data15  [,1:2],
data16  [,1:2],
data17  [,1:2],
data18  [,1:2],
data19  [,1:2],
data20  [,1:2],
data21  [,1:2],
data22  [,1:2],
data23  [,1:2],
data24  [,1:2],
data25  [,1:2],
data26  [,1:2],
data27  [,1:2],
data28  [,1:2],
data29  [,1:2],
data30  [,1:2],
data31  [,1:2],
data32  [,1:2],
data33  [,1:2],
data34  [,1:2],
data35  [,1:2],
data36  [,1:2],
data37  [,1:2],
data38  [,1:2],
data39  [,1:2],
data40  [,1:2],
data41  [,1:2],
data42  [,1:2],
data43  [,1:2],
data44  [,1:2],
data45  [,1:2],
data46  [,1:2],
data47  [,1:2],
data48  [,1:2],
data49  [,1:2],
data50  [,1:2],
data51  [,1:2],
data52  [,1:2],
data53  [,1:2],
data54  [,1:2],
data55  [,1:2],
data56  [,1:2],
data57  [,1:2],
data58  [,1:2],
data59  [,1:2],
data60  [,1:2],
data61  [,1:2],
data62  [,1:2],
data63  [,1:2],
data64  [,1:2],
data65  [,1:2],
data66  [,1:2],
data67  [,1:2],
data68  [,1:2],
data69  [,1:2],
data70  [,1:2],
data71  [,1:2],
data72  [,1:2],
data73  [,1:2],
data74  [,1:2],
data75  [,1:2],
data76  [,1:2],
data77  [,1:2],
data78  [,1:2],
data79  [,1:2],
data80  [,1:2],
data81  [,1:2],
data82  [,1:2],
data83  [,1:2],
data84  [,1:2],
data85  [,1:2],
data86  [,1:2],
data87  [,1:2],
data88  [,1:2],
data89  [,1:2],
data90  [,1:2],
data91  [,1:2],
data92  [,1:2],
data93  [,1:2],
data94  [,1:2],
data95  [,1:2],
data96  [,1:2],
data97  [,1:2],
data98  [,1:2],
data99  [,1:2],
data100 [,1:2],
by=1,all=T) 

-> выдает ошибку:

Error in fix.by(by.x, x) : 
  'by' must specify one or more columns as numbers, names or logical

Я не понимаю эту ошибку, так как я указываю 1 нет?

Остальная часть сценария (остается проверить на 100 входах после исправления первой ошибки)

newdata <- newdata[!is.na(newdata$tm1   ),]
newdata <- newdata[!is.na(newdata$tm2   ),]
newdata <- newdata[!is.na(newdata$tm3   ),]
newdata <- newdata[!is.na(newdata$tm4   ),]
newdata <- newdata[!is.na(newdata$tm5   ),]
newdata <- newdata[!is.na(newdata$tm6   ),]
newdata <- newdata[!is.na(newdata$tm7   ),]
newdata <- newdata[!is.na(newdata$tm8   ),]
newdata <- newdata[!is.na(newdata$tm9   ),]
newdata <- newdata[!is.na(newdata$tm10  ),]
newdata <- newdata[!is.na(newdata$tm11  ),]
newdata <- newdata[!is.na(newdata$tm12  ),]
newdata <- newdata[!is.na(newdata$tm13  ),]
newdata <- newdata[!is.na(newdata$tm14  ),]
newdata <- newdata[!is.na(newdata$tm15  ),]
newdata <- newdata[!is.na(newdata$tm16  ),]
newdata <- newdata[!is.na(newdata$tm17  ),]
newdata <- newdata[!is.na(newdata$tm18  ),]
newdata <- newdata[!is.na(newdata$tm19  ),]
newdata <- newdata[!is.na(newdata$tm20  ),]
newdata <- newdata[!is.na(newdata$tm21  ),]
newdata <- newdata[!is.na(newdata$tm22  ),]
newdata <- newdata[!is.na(newdata$tm23  ),]
newdata <- newdata[!is.na(newdata$tm24  ),]
newdata <- newdata[!is.na(newdata$tm25  ),]
newdata <- newdata[!is.na(newdata$tm26  ),]
newdata <- newdata[!is.na(newdata$tm27  ),]
newdata <- newdata[!is.na(newdata$tm28  ),]
newdata <- newdata[!is.na(newdata$tm29  ),]
newdata <- newdata[!is.na(newdata$tm30  ),]
newdata <- newdata[!is.na(newdata$tm31  ),]
newdata <- newdata[!is.na(newdata$tm32  ),]
newdata <- newdata[!is.na(newdata$tm33  ),]
newdata <- newdata[!is.na(newdata$tm34  ),]
newdata <- newdata[!is.na(newdata$tm35  ),]
newdata <- newdata[!is.na(newdata$tm36  ),]
newdata <- newdata[!is.na(newdata$tm37  ),]
newdata <- newdata[!is.na(newdata$tm38  ),]
newdata <- newdata[!is.na(newdata$tm39  ),]
newdata <- newdata[!is.na(newdata$tm40  ),]
newdata <- newdata[!is.na(newdata$tm41  ),]
newdata <- newdata[!is.na(newdata$tm42  ),]
newdata <- newdata[!is.na(newdata$tm43  ),]
newdata <- newdata[!is.na(newdata$tm44  ),]
newdata <- newdata[!is.na(newdata$tm45  ),]
newdata <- newdata[!is.na(newdata$tm46  ),]
newdata <- newdata[!is.na(newdata$tm47  ),]
newdata <- newdata[!is.na(newdata$tm48  ),]
newdata <- newdata[!is.na(newdata$tm49  ),]
newdata <- newdata[!is.na(newdata$tm50  ),]
newdata <- newdata[!is.na(newdata$tm51  ),]
newdata <- newdata[!is.na(newdata$tm52  ),]
newdata <- newdata[!is.na(newdata$tm53  ),]
newdata <- newdata[!is.na(newdata$tm54  ),]
newdata <- newdata[!is.na(newdata$tm55  ),]
newdata <- newdata[!is.na(newdata$tm56  ),]
newdata <- newdata[!is.na(newdata$tm57  ),]
newdata <- newdata[!is.na(newdata$tm58  ),]
newdata <- newdata[!is.na(newdata$tm59  ),]
newdata <- newdata[!is.na(newdata$tm60  ),]
newdata <- newdata[!is.na(newdata$tm61  ),]
newdata <- newdata[!is.na(newdata$tm62  ),]
newdata <- newdata[!is.na(newdata$tm63  ),]
newdata <- newdata[!is.na(newdata$tm64  ),]
newdata <- newdata[!is.na(newdata$tm65  ),]
newdata <- newdata[!is.na(newdata$tm66  ),]
newdata <- newdata[!is.na(newdata$tm67  ),]
newdata <- newdata[!is.na(newdata$tm68  ),]
newdata <- newdata[!is.na(newdata$tm69  ),]
newdata <- newdata[!is.na(newdata$tm70  ),]
newdata <- newdata[!is.na(newdata$tm71  ),]
newdata <- newdata[!is.na(newdata$tm72  ),]
newdata <- newdata[!is.na(newdata$tm73  ),]
newdata <- newdata[!is.na(newdata$tm74  ),]
newdata <- newdata[!is.na(newdata$tm75  ),]
newdata <- newdata[!is.na(newdata$tm76  ),]
newdata <- newdata[!is.na(newdata$tm77  ),]
newdata <- newdata[!is.na(newdata$tm78  ),]
newdata <- newdata[!is.na(newdata$tm79  ),]
newdata <- newdata[!is.na(newdata$tm80  ),]
newdata <- newdata[!is.na(newdata$tm81  ),]
newdata <- newdata[!is.na(newdata$tm82  ),]
newdata <- newdata[!is.na(newdata$tm83  ),]
newdata <- newdata[!is.na(newdata$tm84  ),]
newdata <- newdata[!is.na(newdata$tm85  ),]
newdata <- newdata[!is.na(newdata$tm86  ),]
newdata <- newdata[!is.na(newdata$tm87  ),]
newdata <- newdata[!is.na(newdata$tm88  ),]
newdata <- newdata[!is.na(newdata$tm89  ),]
newdata <- newdata[!is.na(newdata$tm90  ),]
newdata <- newdata[!is.na(newdata$tm91  ),]
newdata <- newdata[!is.na(newdata$tm92  ),]
newdata <- newdata[!is.na(newdata$tm93  ),]
newdata <- newdata[!is.na(newdata$tm94  ),]
newdata <- newdata[!is.na(newdata$tm95  ),]
newdata <- newdata[!is.na(newdata$tm96  ),]
newdata <- newdata[!is.na(newdata$tm97  ),]
newdata <- newdata[!is.na(newdata$tm98  ),]
newdata <- newdata[!is.na(newdata$tm99  ),]
newdata <- newdata[!is.na(newdata$tm100 ),]



newdata$score1   <- zoo::na.locf(newdata$score1 )
newdata$score2   <- zoo::na.locf(newdata$score2 )
newdata$score3   <- zoo::na.locf(newdata$score3 )
newdata$score4   <- zoo::na.locf(newdata$score4 )
newdata$score5   <- zoo::na.locf(newdata$score5 )
newdata$score6   <- zoo::na.locf(newdata$score6 )
newdata$score7   <- zoo::na.locf(newdata$score7 )
newdata$score8   <- zoo::na.locf(newdata$score8 )
newdata$score9   <- zoo::na.locf(newdata$score9 )
newdata$score10  <- zoo::na.locf(newdata$score10    )
newdata$score11  <- zoo::na.locf(newdata$score11    )
newdata$score12  <- zoo::na.locf(newdata$score12    )
newdata$score13  <- zoo::na.locf(newdata$score13    )
newdata$score14  <- zoo::na.locf(newdata$score14    )
newdata$score15  <- zoo::na.locf(newdata$score15    )
newdata$score16  <- zoo::na.locf(newdata$score16    )
newdata$score17  <- zoo::na.locf(newdata$score17    )
newdata$score18  <- zoo::na.locf(newdata$score18    )
newdata$score19  <- zoo::na.locf(newdata$score19    )
newdata$score20  <- zoo::na.locf(newdata$score20    )
newdata$score21  <- zoo::na.locf(newdata$score21    )
newdata$score22  <- zoo::na.locf(newdata$score22    )
newdata$score23  <- zoo::na.locf(newdata$score23    )
newdata$score24  <- zoo::na.locf(newdata$score24    )
newdata$score25  <- zoo::na.locf(newdata$score25    )
newdata$score26  <- zoo::na.locf(newdata$score26    )
newdata$score27  <- zoo::na.locf(newdata$score27    )
newdata$score28  <- zoo::na.locf(newdata$score28    )
newdata$score29  <- zoo::na.locf(newdata$score29    )
newdata$score30  <- zoo::na.locf(newdata$score30    )
newdata$score31  <- zoo::na.locf(newdata$score31    )
newdata$score32  <- zoo::na.locf(newdata$score32    )
newdata$score33  <- zoo::na.locf(newdata$score33    )
newdata$score34  <- zoo::na.locf(newdata$score34    )
newdata$score35  <- zoo::na.locf(newdata$score35    )
newdata$score36  <- zoo::na.locf(newdata$score36    )
newdata$score37  <- zoo::na.locf(newdata$score37    )
newdata$score38  <- zoo::na.locf(newdata$score38    )
newdata$score39  <- zoo::na.locf(newdata$score39    )
newdata$score40  <- zoo::na.locf(newdata$score40    )
newdata$score41  <- zoo::na.locf(newdata$score41    )
newdata$score42  <- zoo::na.locf(newdata$score42    )
newdata$score43  <- zoo::na.locf(newdata$score43    )
newdata$score44  <- zoo::na.locf(newdata$score44    )
newdata$score45  <- zoo::na.locf(newdata$score45    )
newdata$score46  <- zoo::na.locf(newdata$score46    )
newdata$score47  <- zoo::na.locf(newdata$score47    )
newdata$score48  <- zoo::na.locf(newdata$score48    )
newdata$score49  <- zoo::na.locf(newdata$score49    )
newdata$score50  <- zoo::na.locf(newdata$score50    )
newdata$score51  <- zoo::na.locf(newdata$score51    )
newdata$score52  <- zoo::na.locf(newdata$score52    )
newdata$score53  <- zoo::na.locf(newdata$score53    )
newdata$score54  <- zoo::na.locf(newdata$score54    )
newdata$score55  <- zoo::na.locf(newdata$score55    )
newdata$score56  <- zoo::na.locf(newdata$score56    )
newdata$score57  <- zoo::na.locf(newdata$score57    )
newdata$score58  <- zoo::na.locf(newdata$score58    )
newdata$score59  <- zoo::na.locf(newdata$score59    )
newdata$score60  <- zoo::na.locf(newdata$score60    )
newdata$score61  <- zoo::na.locf(newdata$score61    )
newdata$score62  <- zoo::na.locf(newdata$score62    )
newdata$score63  <- zoo::na.locf(newdata$score63    )
newdata$score64  <- zoo::na.locf(newdata$score64    )
newdata$score65  <- zoo::na.locf(newdata$score65    )
newdata$score66  <- zoo::na.locf(newdata$score66    )
newdata$score67  <- zoo::na.locf(newdata$score67    )
newdata$score68  <- zoo::na.locf(newdata$score68    )
newdata$score69  <- zoo::na.locf(newdata$score69    )
newdata$score70  <- zoo::na.locf(newdata$score70    )
newdata$score71  <- zoo::na.locf(newdata$score71    )
newdata$score72  <- zoo::na.locf(newdata$score72    )
newdata$score73  <- zoo::na.locf(newdata$score73    )
newdata$score74  <- zoo::na.locf(newdata$score74    )
newdata$score75  <- zoo::na.locf(newdata$score75    )
newdata$score76  <- zoo::na.locf(newdata$score76    )
newdata$score77  <- zoo::na.locf(newdata$score77    )
newdata$score78  <- zoo::na.locf(newdata$score78    )
newdata$score79  <- zoo::na.locf(newdata$score79    )
newdata$score80  <- zoo::na.locf(newdata$score80    )
newdata$score81  <- zoo::na.locf(newdata$score81    )
newdata$score82  <- zoo::na.locf(newdata$score82    )
newdata$score83  <- zoo::na.locf(newdata$score83    )
newdata$score84  <- zoo::na.locf(newdata$score84    )
newdata$score85  <- zoo::na.locf(newdata$score85    )
newdata$score86  <- zoo::na.locf(newdata$score86    )
newdata$score87  <- zoo::na.locf(newdata$score87    )
newdata$score88  <- zoo::na.locf(newdata$score88    )
newdata$score89  <- zoo::na.locf(newdata$score89    )
newdata$score90  <- zoo::na.locf(newdata$score90    )
newdata$score91  <- zoo::na.locf(newdata$score91    )
newdata$score92  <- zoo::na.locf(newdata$score92    )
newdata$score93  <- zoo::na.locf(newdata$score93    )
newdata$score94  <- zoo::na.locf(newdata$score94    )
newdata$score95  <- zoo::na.locf(newdata$score95    )
newdata$score96  <- zoo::na.locf(newdata$score96    )
newdata$score97  <- zoo::na.locf(newdata$score97    )
newdata$score98  <- zoo::na.locf(newdata$score98    )
newdata$score99  <- zoo::na.locf(newdata$score99    )
newdata$score100     <- zoo::na.locf(newdata$score100   )

write.table(newdata, "outputR")

Я был бы признателен, если бы кто-нибудь мог помочь мне исправить ошибку "by=1". Вот мои файлы данных. Вы также можете заметить, что я не привык использовать циклы в R, поэтому я просто скопировал все 100 раз, вероятно, не самым простым способом.

--ОБНОВИТЬ

О, я на самом деле думаю, что это потому, что слияние принимает только два аргумента, поэтому я должен использовать:

newdata<- merge(data1[,1:2],data2[,1:2],by=1,all=TRUE)
newdata<- merge(newdata[,1:3],data3[,1:2],by=1,all=TRUE)

для каждого из элементов...

2 ответа

Решение

Аргумент слияния принимает только два значения в качестве входных данных, поэтому вы должны сделать их отдельно:

newdata<- merge(data1[,1:2],data2[,1:2],by=1,all=TRUE)
newdata<- merge(newdata [,1:3   ],data3 [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:4   ],data4 [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:5   ],data5 [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:6   ],data6 [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:7   ],data7 [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:8   ],data8 [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:9   ],data9 [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:10  ],data10    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:11  ],data11    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:12  ],data12    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:13  ],data13    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:14  ],data14    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:15  ],data15    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:16  ],data16    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:17  ],data17    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:18  ],data18    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:19  ],data19    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:20  ],data20    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:21  ],data21    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:22  ],data22    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:23  ],data23    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:24  ],data24    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:25  ],data25    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:26  ],data26    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:27  ],data27    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:28  ],data28    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:29  ],data29    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:30  ],data30    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:31  ],data31    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:32  ],data32    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:33  ],data33    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:34  ],data34    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:35  ],data35    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:36  ],data36    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:37  ],data37    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:38  ],data38    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:39  ],data39    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:40  ],data40    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:41  ],data41    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:42  ],data42    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:43  ],data43    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:44  ],data44    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:45  ],data45    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:46  ],data46    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:47  ],data47    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:48  ],data48    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:49  ],data49    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:50  ],data50    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:51  ],data51    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:52  ],data52    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:53  ],data53    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:54  ],data54    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:55  ],data55    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:56  ],data56    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:57  ],data57    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:58  ],data58    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:59  ],data59    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:60  ],data60    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:61  ],data61    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:62  ],data62    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:63  ],data63    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:64  ],data64    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:65  ],data65    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:66  ],data66    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:67  ],data67    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:68  ],data68    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:69  ],data69    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:70  ],data70    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:71  ],data71    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:72  ],data72    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:73  ],data73    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:74  ],data74    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:75  ],data75    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:76  ],data76    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:77  ],data77    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:78  ],data78    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:79  ],data79    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:80  ],data80    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:81  ],data81    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:82  ],data82    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:83  ],data83    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:84  ],data84    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:85  ],data85    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:86  ],data86    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:87  ],data87    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:88  ],data88    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:89  ],data89    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:90  ],data90    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:91  ],data91    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:92  ],data92    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:93  ],data93    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:94  ],data94    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:95  ],data95    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:96  ],data96    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:97  ],data97    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:98  ],data98    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:99  ],data99    [,1:2],by=1,all=TRUE        )
newdata<- merge(newdata [,1:100 ],data100   [,1:2],by=1,all=TRUE        )

Google возвращает это в качестве первого списка для ошибки R, Error в fix.by(by.x, x), и мне показалось интересным, что ни один ответ не предпринял попыток решения по циклу слишком длинного списка команд OP.

Для будущих читателей, которым необходимо объединить множество фреймов данных, рассмотрите возможность связывания отдельных фреймов данных в список с lapply(), выполните все необходимые вычисления, а затем выполните Reduce(..., merge) объединить все файлы списка в один широкий массив данных. Ниже обрабатывает и объединяет все 100 файлов оригинальной публикации:

library(zoo)

dfList <- lapply(c(1:100), function(i) {
   df <- read.table(paste0("rundata  ", i), sep= " ", col.names=c("tm","score","current"))  
   df <- df[!is.na(df$tm),]
   df$score <- zoo::na.locf(df$score)
   colnames(df) <- paste0(colnames(df), i)
   return(df)
})

newdata <- Reduce(function(...) merge(..., by=1, all=T), dfList)

write.table(newdata, "outputR")
Другие вопросы по тегам