Программирование PIC32MX250F128B с Pickit3
Я успешно программирую PIC32MX250F128B
с помощью Pickit3
, Я написал код, где, когда я нажимаю a
Я получаю 100 данных от датчика вибрации. Теперь, если я хочу получить еще 100 данных, мне нужно либо отключить, а затем снова подключить подтягивающий резистор 10 кОм, подключенный к MCLR
Пин или придется снова запустить программу.
Есть ли другой способ, которым я могу сбросить pickit?
Вот код, который я использую:
#include <p32xxxx.h> // include chip specific header file
#include <plib.h> // include peripheral library functions
// Configuration Bits
#pragma config FNOSC = FRCPLL // Internal Fast RC oscillator (8 MHz) w/ PLL
#pragma config FPLLIDIV = DIV_2 // Divide FRC before PLL (now 4 MHz)
#pragma config FPLLMUL = MUL_20 // PLL Multiply (now 80 MHz)
#pragma config FPLLODIV = DIV_2 // Divide After PLL (now 40 MHz)
// see figure 8.1 in datasheet for more info
#pragma config FWDTEN = OFF // Watchdog Timer Disabled
#pragma config ICESEL = ICS_PGx2 // ICE/ICD Comm Channel Select
#pragma config JTAGEN = OFF // Disable JTAG
#pragma config FSOSCEN = OFF // Disable Secondary Oscillator
#pragma config FPBDIV = DIV_1 // PBCLK = SYCLK
// Defines
#define SYSCLK 40000000L
// Macros
// Equation to set baud rate from UART reference manual equation 21-1
#define Baud2BRG(desired_baud) ( (SYSCLK / (16*desired_baud))-1)
// Function Prototypes
int SerialTransmit(const char *buffer);
unsigned int SerialReceive(char *buffer); //, unsigned int max_size);
int UART2Configure( int baud);
short a2dvals[11000];
int adcptr,num_channels,k,i;
char sampling;
int ADC_RSLT0,totaldata,totaldata1,chunks_sent,data_count,l;
short temp;
BOOL a2don;
volatile unsigned int channel4;
void __ISR(_ADC_VECTOR, IPL2) TIMER3Handler(void) // Fonction d'interruption Timer 3
{
temp = ReadADC10(0);
a2dvals[k] = (temp);
k++;
if (k>totaldata1)// && sampling == 's')
{
T3CONCLR = 0x8000;
a2don=FALSE;
chunks_sent = 0;
totaldata = k/2;
k = 1;
}
mAD1ClearIntFlag();
}
int main(void)
{
char buf[1024]; // declare receive buffer with max size 1024
// Peripheral Pin Select
U2RXRbits.U2RXR = 4; //SET RX to RB8
RPB9Rbits.RPB9R = 2; //SET RB9 to TX
SYSTEMConfigPerformance(SYSCLK);
UART2Configure(9600); // Configure UART2 for a baud rate of 9600
U2MODESET = 0x8000; // enable UART2
ANSELBbits.ANSB2 = 1; // set RB2 (AN4) to analog
TRISBbits.TRISB2 = 1; // set RB2 as an input
//adcConfigureManual(); // Configure ADC
//AD1CON1SET = 0x8000; // Enable ADC
SerialTransmit("Hello! Enter 'a' to do ADC conversion \r\n");
unsigned int rx_size;
while( 1){
rx_size = SerialReceive(buf); //, 1024); // wait here until data is received
SerialTransmit(buf); // Send out data exactly as received
SerialTransmit("\r\n");
}
return 1;
} // END main()
/* UART2Configure() sets up the UART2 for the most standard and minimal operation
* Enable TX and RX lines, 8 data bits, no parity, 1 stop bit, idle when HIGH
* Input: Desired Baud Rate
* Output: Actual Baud Rate from baud control register U2BRG after assignment*/
int UART2Configure( int desired_baud){
U2MODE = 0; // disable autobaud, TX and RX enabled only, 8N1, idle=HIGH
U2STA = 0x1400; // enable TX and RX
U2BRG = Baud2BRG(desired_baud); // U2BRG = (FPb / (16*baud)) - 1
// Calculate actual assigned baud rate
int actual_baud = SYSCLK / (16 * (U2BRG+1));
return actual_baud;
} // END UART2Configure()
/* SerialTransmit() transmits a string to the UART2 TX pin MSB first
*
* Inputs: *buffer = string to transmit */
int SerialTransmit(const char *buffer)
{
unsigned int size = strlen(buffer);
while( size)
{
while( U2STAbits.UTXBF); // wait while TX buffer full
U2TXREG = *buffer; // send single character to transmit buffer
buffer++; // transmit next character on following loop
size--; // loop until all characters sent (when size = 0)
}
while( !U2STAbits.TRMT); // wait for last transmission to finish
return 0;
}
/* SerialReceive() is a blocking function that waits for data on
* the UART2 RX buffer and then stores all incoming data into *buffer
*
* Note that when a carriage return '\r' is received, a nul character
* is appended signifying the strings end
*
* Inputs: *buffer = Character array/pointer to store received data into
* max_size = number of bytes allocated to this pointer
* Outputs: Number of characters received */
unsigned int SerialReceive(char *buffer) //, unsigned int max_size)
{
//unsigned int num_char = 0;
/* Wait for and store incoming data until either a carriage return is received
* or the number of received characters (num_chars) exceeds max_size */
while(1)
{
while( !U2STAbits.URXDA); // wait until data available in RX buffer
*buffer = U2RXREG; // empty contents of RX buffer into *buffer pointer
if (*buffer == 'a')
{
int dummy,dummy1;
unsigned char tempstr[5];
SYSTEMConfig(SYSCLK, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE);
// the ADC ///////////////////////////////////////
// configure and enable the ADC
CloseADC10(); // ensure the ADC is off before setting the configuration
// define setup parameters for OpenADC10
// Turn module on | ouput in integer | trigger mode auto | enable autosample
// ADC_CLK_AUTO -- Internal counter ends sampling and starts conversion (Auto convert)
// ADC_AUTO_SAMPLING_ON -- Sampling begins immediately after last conversion completes; SAMP bit is automatically set
// ADC_AUTO_SAMPLING_OFF -- Sampling begins with AcquireADC10();
#define PARAM1 ADC_MODULE_ON|ADC_FORMAT_INTG32 | ADC_CLK_TMR | ADC_AUTO_SAMPLING_ON //
// define setup parameters for OpenADC10
// ADC ref external | disable offset test | disable scan mode | do 1 sample | use single buf | alternate mode off
#define PARAM2 ADC_VREF_AVDD_AVSS | ADC_OFFSET_CAL_DISABLE | ADC_SCAN_OFF | ADC_SAMPLES_PER_INT_1 | ADC_ALT_BUF_OFF | ADC_ALT_INPUT_OFF
//
// Define setup parameters for OpenADC10
// use peripherial bus clock | set sample time | set ADC clock divider
// ADC_CONV_CLK_Tcy2 means divide CLK_PB by 2 (max speed)
// ADC_SAMPLE_TIME_5 seems to work with a source resistance < 1kohm
#define PARAM3 ADC_CONV_CLK_SYSTEM | ADC_SAMPLE_TIME_5 | ADC_CONV_CLK_Tcy2 //ADC_SAMPLE_TIME_15| ADC_CONV_CLK_Tcy2
// define setup parameters for OpenADC10
// set AN4 and as analog inputs
#define PARAM4 ENABLE_AN4_ANA
// define setup parameters for OpenADC10
// do not assign channels to scan
#define PARAM5 SKIP_SCAN_ALL
// use ground as neg ref for A | use AN4 for input A
// configure to sample AN4
SetChanADC10( ADC_CH0_NEG_SAMPLEA_NVREF | ADC_CH0_POS_SAMPLEA_AN4 ); // configure to sample AN4
OpenADC10( PARAM1, PARAM2, PARAM3, PARAM4, PARAM5 ); // configure ADC using the parameters defined above
ConfigIntADC10(ADC_INT_PRI_2 | ADC_INT_ON);
EnableADC10(); // Enable the ADC
INTEnableSystemMultiVectoredInt();
OpenTimer3(T3_OFF | T3_SOURCE_INT | T3_PS_1_1 ,0x3e8);
num_channels = 1;
totaldata1 = 10500;
a2don=TRUE;
T3CONSET = 0x8000;
k=0;
while(1)
{
while(a2don);
for(i=0;i<100;i++)
{
dummy = a2dvals[i]/1000 ;
tempstr[0] = dummy + 0x30;
dummy1 = a2dvals[i]- dummy*1000;
dummy = dummy1/100;
tempstr[1] = dummy + 0x30;
dummy1 = dummy1 - dummy*100;
dummy = dummy1/10;
tempstr[2] = dummy + 0x30;
dummy1 = dummy1 - dummy*10;
tempstr[3] = dummy1 + 0x30;
//tempstr[4] = "\0";
printf("%c%c%c%c \n", tempstr[0],tempstr[1],tempstr[2],tempstr[3]);
}
a2don=TRUE;
}
}
}
return 1;
}// END SerialReceive()
введите описание изображения здесь
Спасибо за ваши советы.
2 ответа
Вам не нужно сбрасывать Pickit. Во всяком случае, это может быть наименее эффективным способом сделать это (возможно).
Скорее попробуйте что-то вроде этого. Обратите внимание, что это высокий уровень. Вам нужно будет заставить его работать самостоятельно.
void(main){
// Setup your things here
while(1){ // Your infinite loop
// Check if you received 'a' here
if (received_a == 1){ // You received a 'a'
send_data(); // Send your data
}
}
}
Без предоставления реального кода, который вы написали, мы не сможем вам помочь.
Вы используете циклы while(1) везде, а если не используете разрыв; или вернуть команду, вы останетесь в этом цикле навсегда. Я думаю, что вам не нужно, пока while(1) зацикливается в функциях, кроме main(). Удалите их, и это должно работать.
Попробуйте нарисовать поток вашей программы в блок-схеме, она должна прояснить ситуацию. Также рассмотрите возможность использования конечного автомата с использованием switch / case. Это делает намного более понятным, где вы находитесь в коде, и его легче отлаживать. Кроме того, вероятно, даже лучше использовать прерывания для АЦП и последовательного порта. Вы освобождаете картинку, чтобы делать другие вещи, в то время как периферийные устройства занимаются тем, что требует времени.