Преобразовать эту функцию Scheme в другую форму?
Итак, вот один из способов определить сумму как объект передачи сообщений:
(define (make-sum . exps)
(let ((len (length exps)))
;; first handle variable length operands
(cond
((= len 0) (make-number 0)) ;; base case for addition
((= len 1) (car exps)) ;; might as well drop the sum if only 1 argument
((> len 2)
(make-sum (car exps) (apply make-sum (cdr exps))))
;; apply is described in section 2.4, footnote 47
;; > 2 operands: break up into 2 for simplicity in handling
(else ;; must be exactly 2 operands
(let ((op1 (car exps))
(op2 (cadr exps)))
(cond ((op1 'zero?) op2) ;; exp + 0 --> exp
((op2 'zero?) op1)
((and (op1 'number?) (op2 'number?))
(make-number (+ (op1 'value) (op2 'value)))) ;; num + num --> num
(else ;; create a new message-passing object representing the sum
(lambda (m . args)
(cond ((eq? m 'derive)
(if (and (= (length args) 1)
(symbol? (car args)))
;; derivative of a sum is the sum of the derivatives
;; of the parts of the sum
(make-sum (op1 'derive (car args))
(op2 'derive (car args)))
(error "derive needs a variable argument")))
((eq? m 'print) (list '+ (op1 'print) (op2 'print)))
((eq? m 'zero?) #f)
((eq? m 'number?) #f)
((eq? m 'value)
(error "should not be asking for the value of a sum expression"))
((eq? m 'evaluate)
(if (and (= (length args) 2)
(symbol? (car args))
(number? (cadr args)))
(let ((eop1 (op1 'evaluate (car args) (cadr args)))
(eop2 (op2 'evaluate (car args) (cadr args))))
(make-sum eop1 eop2))
(error "evaluate needs a variable symbol and a number")))
((eq? m 'has-constant-multiplier?) #f)
((eq? m 'merge-constant)
(error "should not be merging a constant with an addition"))
(else (error "unknown message" m)))))))))))
Но это можно переписать так:
(define (make-sum exp1 exp2)
(cond ((exp1 'zero?) exp2) ;; exp + 0 --> exp
((exp2 'zero?) exp1)
((and (exp1 'number?) (exp2 'number?))
(make-number (+ (exp1 'value) (exp2 'value)))) ;; num + num --> num
(else ;; create a new message-passing object representing the sum
(lambda (m . args)
(cond ((eq? m 'derive)
(if (and (= (length args) 1)
(symbol? (car args)))
(let ((variable (car args)))
;; derivative of a sum is the sum of the derivatives
;; of the parts of the sum
(make-sum (exp1 'derive variable)
(exp2 'derive variable)))
(error "derive needs a variable argument")))
((eq? m 'print) (list '+ (exp1 'print) (exp2 'print)))
((eq? m 'zero?) #f)
((eq? m 'number?) #f)
((eq? m 'value)
(error "should not be asking for the value of a sum expression"))
((eq? m 'evaluate)
(if (and (= (length args) 2)
(symbol? (car args))
(number? (cadr args)))
(let ((variable (car args))
(number (cadr args)))
(let ((exp1-eval (exp1 'evaluate variable number))
(exp2-eval (exp2 'evaluate variable number)))
(make-sum exp1-eval exp2-eval)))
(error "evaluate needs a variable symbol and a number")))
(else (error "unknown message: " m)))))))
Как бы я изменил написанную мной функцию определения продукта как объекта для передачи сообщений во второй формат выше? Вот код, который я написал:
(define (make-product . exps)
(let ((len (length exps)))
(cond
((= len 0) (make-number 1)) ;; base case for multiplication
((= len 1) (car exps)) ;; might as well drop the product if only 1 argument
((> len 2) (make-product (car exps) (apply make-product (cdr exps))))
(else
(let ((op1 (car exps))
(op2 (cadr exps)))
(cond ((op1 'zero?) (make-number 0))
((op2 'zero?) (make-number 0))
((and (op1 'number?) (= (op1 'value) 1)) op2) ;; multiplicative identity
((and (op2 'number?) (= (op2 'value) 1)) op1) ;; multiplicative identity
((and (op1 'number?) (op2 'has-constant-multiplier?))
(op2 'merge-constant (op1 'value)))
((and (op2 'number?) (op1 'has-constant-multiplier?))
(op1 'merge-constant (op2 'value)))
(else
(lambda (m . args)
(cond ((eq? m 'derive)
(if (and (= (length args) 1)
(symbol? (car args)))
(make-sum
(make-product (op1 'derive (car args)) op2)
(make-product op1 (op2 'derive (car args))))
(error "derive needs a variable argument")))
((eq? m 'print) (list '* (op1 'print) (op2 'print)))
((eq? m 'zero?) #f)
((eq? m 'number?) #f)
((eq? m 'value)
(error "should not be asking for the value of an product expression"))
((eq? m 'evaluate)
(if (and (= (length args) 2)
(symbol? (car args))
(number? (cadr args)))
(let ((eop1 (op1 'evaluate (car args) (cadr args)))
(eop2 (op2 'evaluate (car args) (cadr args))))
(make-product eop1 eop2))
(error "evaluate needs a variable symbol and a number")))
((eq? m 'has-constant-multiplier?)
(or (op1 'has-constant-multiplier?)
(op2 'has-constant-multiplier?)))
((eq? m 'merge-constant)
(if (and (= (length args) 1)
(number? (car args)))
(cond ((op1 'has-constant-multiplier?)
(make-product
(op1 'merge-constant (car args))
op2))
((op2 'has-constant-multiplier?)
(make-product
op1
(op2 'merge-constant (car args))))
(else
(error "should not be calling merge-constant on a product with no constant multiplier")))
(error "invalid arguments to merge-constant")))
(else (error "unknown message" m)))))))))))
1 ответ
Основные различия между двумя make-sum
functions is second - бинарная (2-аргументная) функция, в то время как первая имеет переменную arity. Удалить первый cond
от первой make-sum
и у вас в основном есть второй make-sum
, Второй не справляется 'has-constant-multiplier?
или же 'merge-constant
, но другие различия полностью косметические. Исходя из этого, вы можете сделать вывод, что отстранение make-product
это то, что вам нужно сделать.