Ошибка: не удается найти символьную переменную haarcascade_lefteye_2splits
Я работаю над приложением для отслеживания зрения, используя Android Studio и библиотеку OpenCV 2.4.9. У меня есть эти 3 ошибки, которые я не могу решить, хотя я много пробовал с ними. Я не знаю, что не так:(особенно с "haarcascade_lefteye_2splits" любая помощь будет оценена.
Это моя деятельность:
package com.derzapp.myfacedetection;
import android.app.Activity;
import android.content.Context;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.view.WindowManager;
import android.widget.SeekBar;
import android.widget.TextView;
import org.opencv.android.BaseLoaderCallback;
import org.opencv.android.CameraBridgeViewBase;
import org.opencv.android.CameraBridgeViewBase.CvCameraViewFrame;
import org.opencv.android.CameraBridgeViewBase.CvCameraViewListener2;
import org.opencv.android.LoaderCallbackInterface;
import org.opencv.android.OpenCVLoader;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
import org.opencv.objdetect.Objdetect;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import static org.opencv.core.Core.circle;
public class FdActivity extends Activity implements CvCameraViewListener2 {
private static final String TAG = "OCVSample::Activity";
private static final Scalar FACE_RECT_COLOR = new Scalar(0, 255, 0, 255);
public static final int JAVA_DETECTOR = 0;
private static final int TM_SQDIFF = 0;
private static final int TM_SQDIFF_NORMED = 1;
private static final int TM_CCOEFF = 2;
private static final int TM_CCOEFF_NORMED = 3;
private static final int TM_CCORR = 4;
private static final int TM_CCORR_NORMED = 5;
private int learn_frames = 0;
private Mat teplateR;
private Mat teplateL;
int method = 0;
// matrix for zooming
private Mat mZoomWindow;
private Mat mZoomWindow2;
private MenuItem mItemFace50;
private MenuItem mItemFace40;
private MenuItem mItemFace30;
private MenuItem mItemFace20;
// private MenuItem mItemType;
private Mat mRgba;
private Mat mGray;
private File mCascadeFile;
private File mCascadeFileEye;
private CascadeClassifier mJavaDetector;
private CascadeClassifier mJavaDetectorEye;
private int mDetectorType = JAVA_DETECTOR;
private String[] mDetectorName;
private float mRelativeFaceSize = 0.2f;
private int mAbsoluteFaceSize = 0;
private CameraBridgeViewBase mOpenCvCameraView;
private SeekBar mMethodSeekbar;
private TextView mValue;
double xCenter = -1;
double yCenter = -1;
private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) {
@Override
public void onManagerConnected(int status) {
switch (status) {
case LoaderCallbackInterface.SUCCESS:
{
Log.i(TAG, "OpenCV loaded successfully");
try {
// load cascade file from application resources
InputStream is = getResources().openRawResource(R.raw.lbpcascade_frontalface);
File cascadeDir = getDir("cascade", Context.MODE_PRIVATE);
mCascadeFile = new File(cascadeDir, "lbpcascade_frontalface.xml");
FileOutputStream os = new FileOutputStream(mCascadeFile);
byte[] buffer = new byte[4096];
int bytesRead;
while ((bytesRead = is.read(buffer)) != -1) {
os.write(buffer, 0, bytesRead);
}
is.close();
os.close();
// load cascade file from application resources
InputStream ise = getResources().openRawResource(R.raw.haarcascade_lefteye_2splits);
File cascadeDirEye = getDir("cascade", Context.MODE_PRIVATE);
mCascadeFileEye = new File(cascadeDirEye, "haarcascade_lefteye_2splits.xml");
FileOutputStream ose = new FileOutputStream(mCascadeFileEye);
while ((bytesRead = ise.read(buffer)) != -1) {
ose.write(buffer, 0, bytesRead);
}
ise.close();
ose.close();
mJavaDetector = new CascadeClassifier(mCascadeFile.getAbsolutePath());
if (mJavaDetector.empty()) {
Log.e(TAG, "Failed to load cascade classifier");
mJavaDetector = null;
} else
Log.i(TAG, "Loaded cascade classifier from " + mCascadeFile.getAbsolutePath());
mJavaDetectorEye = new CascadeClassifier(mCascadeFileEye.getAbsolutePath());
if (mJavaDetectorEye.empty()) {
Log.e(TAG, "Failed to load cascade classifier for eye");
mJavaDetectorEye = null;
} else
Log.i(TAG, "Loaded cascade classifier from " + mCascadeFileEye.getAbsolutePath());
cascadeDir.delete();
cascadeDirEye.delete();
} catch (IOException e) {
e.printStackTrace();
Log.e(TAG, "Failed to load cascade. Exception thrown: " + e);
}
mOpenCvCameraView.enableFpsMeter();
mOpenCvCameraView.setCameraIndex(1);
mOpenCvCameraView.enableView();
} break;
default:
{
super.onManagerConnected(status);
} break;
}
}
};
public FdActivity() {
mDetectorName = new String[2];
mDetectorName[JAVA_DETECTOR] = "Java";
Log.i(TAG, "Instantiated new " + this.getClass());
}
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
Log.i(TAG, "called onCreate");
super.onCreate(savedInstanceState);
getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
setContentView(R.layout.face_detect_surface_view);
mOpenCvCameraView = (CameraBridgeViewBase) findViewById(R.id.fd_activity_surface_view);
mOpenCvCameraView.setCvCameraViewListener(this);
mMethodSeekbar = (SeekBar) findViewById(R.id.methodSeekBar);
mValue = (TextView) findViewById(R.id.method);
mMethodSeekbar.setOnSeekBarChangeListener(new SeekBar.OnSeekBarChangeListener() {
@Override
public void onStopTrackingTouch(SeekBar seekBar)
{
// TODO Auto-generated method stub
}
@Override
public void onStartTrackingTouch(SeekBar seekBar)
{
// TODO Auto-generated method stub
}
@Override
public void onProgressChanged(SeekBar seekBar, int progress,
boolean fromUser)
{
method = progress;
switch (method) {
case 0:
mValue.setText("TM_SQDIFF");
break;
case 1:
mValue.setText("TM_SQDIFF_NORMED");
break;
case 2:
mValue.setText("TM_CCOEFF");
break;
case 3:
mValue.setText("TM_CCOEFF_NORMED");
break;
case 4:
mValue.setText("TM_CCORR");
break;
case 5:
mValue.setText("TM_CCORR_NORMED");
break;
}
}
});
}
@Override
public void onPause()
{
super.onPause();
if (mOpenCvCameraView != null)
mOpenCvCameraView.disableView();
}
@Override
public void onResume()
{
super.onResume();
if (!OpenCVLoader.initDebug()) {
Log.d(TAG, "Internal OpenCV library not found. Using OpenCV Manager for initialization");
OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_9, this, mLoaderCallback);
} else {
Log.d(TAG, "OpenCV library found inside package. Using it!");
mLoaderCallback.onManagerConnected(LoaderCallbackInterface.SUCCESS);
}
}
public void onDestroy() {
super.onDestroy();
mOpenCvCameraView.disableView();
}
public void onCameraViewStarted(int width, int height) {
mGray = new Mat();
mRgba = new Mat();
}
public void onCameraViewStopped() {
mGray.release();
mRgba.release();
mZoomWindow.release();
mZoomWindow2.release();
}
public Mat onCameraFrame(CvCameraViewFrame inputFrame) {
mRgba = inputFrame.rgba();
mGray = inputFrame.gray();
if (mAbsoluteFaceSize == 0) {
int height = mGray.rows();
if (Math.round(height * mRelativeFaceSize) > 0) {
mAbsoluteFaceSize = Math.round(height * mRelativeFaceSize);
}
}
if (mZoomWindow == null || mZoomWindow2 == null)
CreateAuxiliaryMats();
MatOfRect faces = new MatOfRect();
//===============================
Core.flip(mRgba.t(), mRgba, -1);
Core.flip(mGray.t(), mGray, -1);
//-------------------------------
if (mDetectorType == JAVA_DETECTOR) {
if (mJavaDetector != null)
mJavaDetector.detectMultiScale(mGray, faces, 1.1, 2, 2, // TODO: objdetect.CV_HAAR_SCALE_IMAGE
new Size(mAbsoluteFaceSize, mAbsoluteFaceSize), new Size());
}
else {
Log.e(TAG, "Detection method is not selected!");
}
Rect[] facesArray = faces.toArray();
for (int i = 0; i < facesArray.length; i++)
{ Core.rectangle(mRgba, facesArray[i].tl(), facesArray[i].br(),
FACE_RECT_COLOR, 3);
xCenter = (facesArray[i].x + facesArray[i].width + facesArray[i].x) / 2;
yCenter = (facesArray[i].y + facesArray[i].y + facesArray[i].height) / 2;
Point center = new Point(xCenter, yCenter);
Core.circle(mRgba, center, 10, new Scalar(255, 0, 0, 255), 3);
Core.putText(mRgba, "[" + center.x + "," + center.y + "]",
new Point(center.x + 20, center.y + 20),
Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255,
255));
Rect r = facesArray[i];
// compute the eye area
Rect eyearea = new Rect(r.x + r.width / 8,
(int) (r.y + (r.height / 4.5)), r.width - 2 * r.width / 8,
(int) (r.height / 3.0));
// split it
Rect eyearea_right = new Rect(r.x + r.width / 16,
(int) (r.y + (r.height / 4.5)),
(r.width - 2 * r.width / 16) / 2, (int) (r.height / 3.0));
Rect eyearea_left = new Rect(r.x + r.width / 16
+ (r.width - 2 * r.width / 16) / 2,
(int) (r.y + (r.height / 4.5)),
(r.width - 2 * r.width / 16) / 2, (int) (r.height / 3.0));
// draw the area - mGray is working grayscale mat, if you want to
// see area in rgb preview, change mGray to mRgba
Core.rectangle(mRgba, eyearea_left.tl(), eyearea_left.br(),
new Scalar(255, 0, 0, 255), 2);
Core.rectangle(mRgba, eyearea_right.tl(), eyearea_right.br(),
new Scalar(255, 0, 0, 255), 2);
if (learn_frames < 5) {
teplateR = get_template(mJavaDetectorEye, eyearea_right, 24);
teplateL = get_template(mJavaDetectorEye, eyearea_left, 24);
learn_frames++;
} else {
// Learning finished, use the new templates for template
// matching
match_eye(eyearea_right, teplateR, method);
match_eye(eyearea_left, teplateL, method);
}
/*
// cut eye areas and put them to zoom windows
Imgproc.resize(mRgba.submat(eyearea_left), mZoomWindow2,
mZoomWindow2.size());
Imgproc.resize(mRgba.submat(eyearea_right), mZoomWindow,
mZoomWindow.size());
*/
}
return mRgba;
}
@Override
public boolean onCreateOptionsMenu(Menu menu) {
Log.i(TAG, "called onCreateOptionsMenu");
mItemFace50 = menu.add("Face size 50%");
mItemFace40 = menu.add("Face size 40%");
mItemFace30 = menu.add("Face size 30%");
mItemFace20 = menu.add("Face size 20%");
return true;
}
@Override
public boolean onOptionsItemSelected(MenuItem item) {
Log.i(TAG, "called onOptionsItemSelected; selected item: " + item);
if (item == mItemFace50)
setMinFaceSize(0.5f);
else if (item == mItemFace40)
setMinFaceSize(0.4f);
else if (item == mItemFace30)
setMinFaceSize(0.3f);
else if (item == mItemFace20)
setMinFaceSize(0.2f);
return true;
}
private void setMinFaceSize(float faceSize) {
mRelativeFaceSize = faceSize;
mAbsoluteFaceSize = 0;
}
private void CreateAuxiliaryMats() {
if (mGray.empty())
return;
int rows = mGray.rows();
int cols = mGray.cols();
if (mZoomWindow == null) {
mZoomWindow = mRgba.submat(rows / 2 + rows / 10, rows, cols / 2
+ cols / 10, cols);
mZoomWindow2 = mRgba.submat(0, rows / 2 - rows / 10, cols / 2
+ cols / 10, cols);
}
}
private void match_eye(Rect area, Mat mTemplate, int type) {
Point matchLoc;
Mat mROI = mGray.submat(area);
int result_cols = mROI.cols() - mTemplate.cols() + 1;
int result_rows = mROI.rows() - mTemplate.rows() + 1;
// Check for bad template size
if (mTemplate.cols() == 0 || mTemplate.rows() == 0) {
return ;
}
Mat mResult = new Mat(result_cols, result_rows, CvType.CV_8U);
switch (type) {
case TM_SQDIFF:
Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_SQDIFF);
break;
case TM_SQDIFF_NORMED:
Imgproc.matchTemplate(mROI, mTemplate, mResult,
Imgproc.TM_SQDIFF_NORMED);
break;
case TM_CCOEFF:
Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_CCOEFF);
break;
case TM_CCOEFF_NORMED:
Imgproc.matchTemplate(mROI, mTemplate, mResult,
Imgproc.TM_CCOEFF_NORMED);
break;
case TM_CCORR:
Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_CCORR);
break;
case TM_CCORR_NORMED:
Imgproc.matchTemplate(mROI, mTemplate, mResult,
Imgproc.TM_CCORR_NORMED);
break;
}
Core.MinMaxLocResult mmres = Core.minMaxLoc(mResult);
// there is difference in matching methods - best match is max/min value
if (type == TM_SQDIFF || type == TM_SQDIFF_NORMED) {
matchLoc = mmres.minLoc;
} else {
matchLoc = mmres.maxLoc;
}
Point matchLoc_tx = new Point(matchLoc.x + area.x, matchLoc.y + area.y);
Point matchLoc_ty = new Point(matchLoc.x + mTemplate.cols() + area.x,
matchLoc.y + mTemplate.rows() + area.y);
Core.rectangle(mRgba, matchLoc_tx, matchLoc_ty, new Scalar(255, 255, 0,
255));
Rect rec = new Rect(matchLoc_tx,matchLoc_ty);
}
private Mat get_template(CascadeClassifier clasificator, Rect area, int size) {
Mat template = new Mat();
Mat mROI = mGray.submat(area);
MatOfRect eyes = new MatOfRect();
Point iris = new Point();
Rect eye_template = new Rect();
clasificator.detectMultiScale(mROI, eyes, 1.15, 2,
Objdetect.CASCADE_FIND_BIGGEST_OBJECT
| Objdetect.CASCADE_SCALE_IMAGE, new Size(30, 30),
new Size());
Rect[] eyesArray = eyes.toArray();
for (int i = 0; i < eyesArray.length;) {
Rect e = eyesArray[i];
e.x = area.x + e.x;
e.y = area.y + e.y;
Rect eye_only_rectangle = new Rect((int) e.tl().x,
(int) (e.tl().y + e.height * 0.4), (int) e.width,
(int) (e.height * 0.6));
mROI = mGray.submat(eye_only_rectangle);
Mat vyrez = mRgba.submat(eye_only_rectangle);
Core.MinMaxLocResult mmG = Core.minMaxLoc(mROI);
circle(vyrez, mmG.minLoc, 2, new Scalar(255, 255, 255, 255), 2);
iris.x = mmG.minLoc.x + eye_only_rectangle.x;
iris.y = mmG.minLoc.y + eye_only_rectangle.y;
eye_template = new Rect((int) iris.x - size / 2, (int) iris.y
- size / 2, size, size);
Core.rectangle(mRgba, eye_template.tl(), eye_template.br(),
new Scalar(255, 0, 0, 255), 2);
template = (mGray.submat(eye_template)).clone();
return template;
}
return template;
}
public void onRecreateClick(View v)
{
learn_frames = 0;
}
}