Храните и маркируйте изображение в 2D-массиве для Tensorflow

Я хочу сделать распознавание изображений с Tensorflow для трех разных классов изображений. Теперь моя проблема - пометить изображения для моего тренировочного набора и сохранить их в 2D-массиве для использования в распознавании. Я уже использовал метод для хранения 2 классов (в примере кода это X и Y), но теперь я хочу сделать это и для третьего класса (В коде, названном Z.

import cv2                 # working with, mainly resizing, images
import numpy as np         # dealing with arrays
import os                  # dealing with directories
from random import shuffle # mixing up current data
from tqdm import tqdm      # percentage bar for tasks
import time
import matplotlib.pyplot as plt

import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression


TRAIN_DIR = 'MYPATH'
TEST_DIR = 'MYPATH'
IMG_SIZE = 80 
# learning rate
LR = 1e-5

MODEL_NAME = 'name-{}-{}.model'.format(LR, '2conv-basic')

# convert image and label information to array information
def label_img(img):
    #split images
    word_label = img.split('.')[-3]
    if word_label == 'X': return [1,0] 
    elif word_label == 'Y': return [0,1]
    elif word_label == 'Z' : return [???]

# create training data array
def create_train_data():
    training_data = []
    for img in tqdm(os.listdir(TRAIN_DIR)):
        label = label_img(img)
        path = os.path.join(TRAIN_DIR,img)
        img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
        img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
        training_data.append([np.array(img),np.array(label)])
    shuffle(training_data)
    np.save('train_data.npy', training_data)
    return training_data

def process_test_data():
    testing_data = []
    for img in tqdm(os.listdir(TEST_DIR)):
        path = os.path.join(TEST_DIR,img)
        img_num = img.split('.')[1]
        img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
        img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
        testing_data.append([np.array(img), img_num])

    shuffle(testing_data)
    np.save('test_data.npy', testing_data)
    return testing_data

train_data = create_train_data()
# if you already have train data:
#train_data = np.load('train_data.npy')

import tensorflow as tf
tf.reset_default_graph()

convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1], name='input')

convnet = conv_2d(convnet, 32, 2, activation='relu')
convnet = max_pool_2d(convnet, 2)

convnet = conv_2d(convnet, 64, 2, activation='relu')
convnet = max_pool_2d(convnet, 2)

convnet = conv_2d(convnet, 32, 2, activation='relu')
convnet = max_pool_2d(convnet, 2)

convnet = conv_2d(convnet, 64, 2, activation='relu')
convnet = max_pool_2d(convnet, 2)

convnet = conv_2d(convnet, 32, 2, activation='relu')
convnet = max_pool_2d(convnet, 2)

convnet = conv_2d(convnet, 64, 2, activation='relu')
convnet = max_pool_2d(convnet, 2)

convnet = fully_connected(convnet, 1024, activation='relu')
convnet = dropout(convnet, 0.8)

convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=LR, loss='categorical_crossentropy', name='targets')

model = tflearn.DNN(convnet, tensorboard_dir='log')

if os.path.exists('{}.meta'.format(MODEL_NAME)):
    model.load(MODEL_NAME)
    print('model loaded!')

train = train_data[:-500]
test = train_data[-500:]

X = np.array([i[0] for i in train]).reshape(-1,IMG_SIZE, IMG_SIZE, 1)
Y = [i[1] for i in train]

test_x = np.array([i[0] for i in test]).reshape(-1,IMG_SIZE,IMG_SIZE,1)
test_y = [i[1] for i in test]

model.fit({'input': X}, {'targets': Y}, n_epoch=15, validation_set=({'input': test_x}, {'targets': test_y}), 
    snapshot_step=500, show_metric=True, run_id=MODEL_NAME)

model.save(MODEL_NAME)

# if you need to create the data:
test_data = process_test_data()
# if you already have some saved:
#test_data = np.load('test_data.npy')

fig=plt.figure()

for num,data in enumerate(test_data[:12]):

    img_num = data[1]
    img_data = data[0]

    y = fig.add_subplot(3,4,num+1)
    orig = img_data
    data = img_data.reshape(IMG_SIZE,IMG_SIZE,1)
    #model_out = model.predict([data])[0]
    model_out = model.predict([data])[0]

    if np.argmax(model_out) == 1: str_label='X'
    else: str_label='Y'

    y.imshow(orig,cmap='gray')
    plt.title(str_label)
    y.axes.get_xaxis().set_visible(False)
    y.axes.get_yaxis().set_visible(False)
plt.show()

1 ответ

Решение

Чтобы добавить класс, просто разверните размерность ваших массивов меток изображения:

# convert image and label information to array information
def label_img(img):
    #split images
    word_label = img.split('.')[-3]
    if word_label == 'X': return [1,0,0] 
    elif word_label == 'Y': return [0,1,0]
    elif word_label == 'Z' : return [0,0,1]

Вам также необходимо обновить классификатор softmax для обработки 3 классов:

convnet = fully_connected(convnet, 3, activation='softmax')

Вам также нужно будет отключить загрузку старой модели. Старая модель действительна только для старого графика, но, поскольку она изменяется, мы должны начать с нуля.

###
if os.path.exists('{}.meta'.format(MODEL_NAME)):
    model.load(MODEL_NAME)
    print('model loaded!')
###
Другие вопросы по тегам