Sequence-zip функция для C++11?
С новым циклом for на основе диапазона мы можем написать код
for(auto x: Y) {}
Какой ИМО является огромным улучшением от (например)
for(std::vector<int>::iterator x=Y.begin(); x!=Y.end(); ++x) {}
Может ли он использоваться для зацикливания на двух одновременных циклах, как Pythons zip
функционировать? Для тех, кто не знаком с Python, код:
Y1 = [1,2,3]
Y2 = [4,5,6,7]
for x1,x2 in zip(Y1,Y2):
print x1,x2
Дает в качестве вывода (1,4) (2,5) (3,6)
16 ответов
Предупреждение: boost::zip_iterator
а также boost::combine
с Boost 1.63.0 (26.12.2016) будет вызывать неопределенное поведение, если длина входных контейнеров не одинакова (может произойти сбой или итерация за пределами конца).
Начиная с Boost 1.56.0 (7 августа 2014 г.) вы можете использоватьboost::combine
(функция существует в более ранних версиях, но без документов):
#include <boost/range/combine.hpp>
#include <vector>
#include <list>
#include <string>
int main() {
std::vector<int> a {4, 5, 6};
double b[] = {7, 8, 9};
std::list<std::string> c {"a", "b", "c"};
for (auto tup : boost::combine(a, b, c, a)) { // <---
int x, w;
double y;
std::string z;
boost::tie(x, y, z, w) = tup;
printf("%d %g %s %d\n", x, y, z.c_str(), w);
}
}
Это напечатало бы
4 7 a 4 5 8 б 5 6 9 с 6
В более ранних версиях вы могли определить диапазон самостоятельно следующим образом:
#include <boost/iterator/zip_iterator.hpp>
#include <boost/range.hpp>
template <typename... T>
auto zip(T&&... containers) -> boost::iterator_range<boost::zip_iterator<decltype(boost::make_tuple(std::begin(containers)...))>>
{
auto zip_begin = boost::make_zip_iterator(boost::make_tuple(std::begin(containers)...));
auto zip_end = boost::make_zip_iterator(boost::make_tuple(std::end(containers)...));
return boost::make_iterator_range(zip_begin, zip_end);
}
Использование такое же.
std::transform может сделать это тривиально:
std::vector<int> a = {1,2,3,4,5};
std::vector<int> b = {1,2,3,4,5};
std::vector<int>c;
std::transform(a.begin(),a.end(), b.begin(),
std::back_inserter(c),
[](const auto& aa, const auto& bb)
{
return aa*bb;
});
for(auto cc:c)
std::cout<<cc<<std::endl;
Если вторая последовательность короче, моя реализация, кажется, дает инициализированные значения по умолчанию.
Поэтому я написал этот zip раньше, когда мне было скучно, я решил опубликовать его, потому что он отличается от других тем, что он не использует boost и больше похож на C++ stdlib.
template <typename Iterator>
void advance_all (Iterator & iterator) {
++iterator;
}
template <typename Iterator, typename ... Iterators>
void advance_all (Iterator & iterator, Iterators& ... iterators) {
++iterator;
advance_all(iterators...);
}
template <typename Function, typename Iterator, typename ... Iterators>
Function zip (Function func, Iterator begin,
Iterator end,
Iterators ... iterators)
{
for(;begin != end; ++begin, advance_all(iterators...))
func(*begin, *(iterators)... );
//could also make this a tuple
return func;
}
Пример использования:
int main () {
std::vector<int> v1{1,2,3};
std::vector<int> v2{3,2,1};
std::vector<float> v3{1.2,2.4,9.0};
std::vector<float> v4{1.2,2.4,9.0};
zip (
[](int i,int j,float k,float l){
std::cout << i << " " << j << " " << k << " " << l << std::endl;
},
v1.begin(),v1.end(),v2.begin(),v3.begin(),v4.begin());
}
С Range-V3:
#include <range/v3/all.hpp>
#include <vector>
#include <iostream>
namespace ranges {
template <class T, class U>
std::ostream& operator << (std::ostream& os, common_pair<T, U> const& p)
{
return os << '(' << p.first << ", " << p.second << ')';
}
}
using namespace ranges::v3;
int main()
{
std::vector<int> a {4, 5, 6};
double b[] = {7, 8, 9};
std::cout << view::zip(a, b) << std::endl;
}
Выход:
[(4, 7), (5, 8), (6, 9)]
Увидеть <redi/zip.h>
для zip
функция, которая работает с Range-Base for
и принимает любое количество диапазонов, которые могут быть r-значениями или l-значениями и могут быть различной длины (итерация остановится в конце самого короткого диапазона).
std::vector<int> vi{ 0, 2, 4 };
std::vector<std::string> vs{ "1", "3", "5", "7" };
for (auto i : redi::zip(vi, vs))
std::cout << i.get<0>() << ' ' << i.get<1>() << ' ';
Печать 0 1 2 3 4 5
Вы можете использовать решение на основе boost::zip_iterator
, Создайте фальшивый класс контейнера, поддерживающий ссылки на ваши контейнеры и возвращающий zip_iterator
от begin
а также end
функции-члены. Теперь вы можете написать
for (auto p: zip(c1, c2)) { ... }
Пример реализации (пожалуйста, протестируйте):
#include <iterator>
#include <boost/iterator/zip_iterator.hpp>
template <typename C1, typename C2>
class zip_container
{
C1* c1; C2* c2;
typedef boost::tuple<
decltype(std::begin(*c1)),
decltype(std::begin(*c2))
> tuple;
public:
zip_container(C1& c1, C2& c2) : c1(&c1), c2(&c2) {}
typedef boost::zip_iterator<tuple> iterator;
iterator begin() const
{
return iterator(std::begin(*c1), std::begin(*c2));
}
iterator end() const
{
return iterator(std::end(*c1), std::end(*c2));
}
};
template <typename C1, typename C2>
zip_container<C1, C2> zip(C1& c1, C2& c2)
{
return zip_container<C1, C2>(c1, c2);
}
Я оставляю вариационную версию как отличное упражнение для читателя.
Начиная с C++23, мы можем повторитьstd::views::zip
. Ниже приведен простой пример.
#include <iostream>
#include <ranges>
#include <vector>
int main() {
std::vector<int> x {4, 5, 6};
double y[] = {7, 8, 9};
for (auto [elem1,elem2] : std::views::zip(x, y))
std::cout << "[" << elem1 << "," << elem2 << "]" << " ";
}
Результат можно проверить ниже (онлайн-компилятор). Не уверен, сколько дней существует ссылка.
Если вам нравится перегрузка оператора, здесь есть три варианта. Первые два используют std::pair<>
а также std::tuple<>
соответственно как итераторы; третий расширяет это на основе диапазона for
, Обратите внимание, что не всем понравятся эти определения операторов, поэтому лучше хранить их в отдельном пространстве имен и иметь using namespace
в функции (не файлы!), где вы хотели бы использовать их.
#include <iostream>
#include <utility>
#include <vector>
#include <tuple>
// put these in namespaces so we don't pollute global
namespace pair_iterators
{
template<typename T1, typename T2>
std::pair<T1, T2> operator++(std::pair<T1, T2>& it)
{
++it.first;
++it.second;
return it;
}
}
namespace tuple_iterators
{
// you might want to make this generic (via param pack)
template<typename T1, typename T2, typename T3>
auto operator++(std::tuple<T1, T2, T3>& it)
{
++( std::get<0>( it ) );
++( std::get<1>( it ) );
++( std::get<2>( it ) );
return it;
}
template<typename T1, typename T2, typename T3>
auto operator*(const std::tuple<T1, T2, T3>& it)
{
return std::tie( *( std::get<0>( it ) ),
*( std::get<1>( it ) ),
*( std::get<2>( it ) ) );
}
// needed due to ADL-only lookup
template<typename... Args>
struct tuple_c
{
std::tuple<Args...> containers;
};
template<typename... Args>
auto tie_c( const Args&... args )
{
tuple_c<Args...> ret = { std::tie(args...) };
return ret;
}
template<typename T1, typename T2, typename T3>
auto begin( const tuple_c<T1, T2, T3>& c )
{
return std::make_tuple( std::get<0>( c.containers ).begin(),
std::get<1>( c.containers ).begin(),
std::get<2>( c.containers ).begin() );
}
template<typename T1, typename T2, typename T3>
auto end( const tuple_c<T1, T2, T3>& c )
{
return std::make_tuple( std::get<0>( c.containers ).end(),
std::get<1>( c.containers ).end(),
std::get<2>( c.containers ).end() );
}
// implement cbegin(), cend() as needed
}
int main()
{
using namespace pair_iterators;
using namespace tuple_iterators;
std::vector<double> ds = { 0.0, 0.1, 0.2 };
std::vector<int > is = { 1, 2, 3 };
std::vector<char > cs = { 'a', 'b', 'c' };
// classical, iterator-style using pairs
for( auto its = std::make_pair(ds.begin(), is.begin()),
end = std::make_pair(ds.end(), is.end() ); its != end; ++its )
{
std::cout << "1. " << *(its.first ) + *(its.second) << " " << std::endl;
}
// classical, iterator-style using tuples
for( auto its = std::make_tuple(ds.begin(), is.begin(), cs.begin()),
end = std::make_tuple(ds.end(), is.end(), cs.end() ); its != end; ++its )
{
std::cout << "2. " << *(std::get<0>(its)) + *(std::get<1>(its)) << " "
<< *(std::get<2>(its)) << " " << std::endl;
}
// range for using tuples
for( const auto& d_i_c : tie_c( ds, is, cs ) )
{
std::cout << "3. " << std::get<0>(d_i_c) + std::get<1>(d_i_c) << " "
<< std::get<2>(d_i_c) << " " << std::endl;
}
}
// declare a, b
BOOST_FOREACH(boost::tie(a, b), boost::combine(list_of_a, list_of_b)){
// your code here.
}
Я столкнулся с этим же вопросом самостоятельно и мне не понравился синтаксис любого из вышеперечисленного. Итак, у меня есть короткий заголовочный файл, который по сути делает то же самое, что и boost zip_iterator, но содержит несколько макросов, чтобы сделать синтаксис более приемлемым для меня:
https://github.com/cshelton/zipfor
Например, вы можете сделать
vector<int> a {1,2,3};
array<string,3> b {"hello","there","coders"};
zipfor(i,s eachin a,b)
cout << i << " => " << s << endl;
Основной синтаксический сахар в том, что я могу назвать элементы из каждого контейнера. Я также включаю "mapfor", который делает то же самое, но для карт (чтобы назвать ".first" и ".second" элемента).
Если у вас есть компилятор, совместимый с C++14 (например, gcc5), вы можете использовать zip
предусмотрено в cppitertools
библиотека Райана Хейнинга, которая выглядит действительно многообещающе:
array<int,4> i{{1,2,3,4}};
vector<float> f{1.2,1.4,12.3,4.5,9.9};
vector<string> s{"i","like","apples","alot","dude"};
array<double,5> d{{1.2,1.2,1.2,1.2,1.2}};
for (auto&& e : zip(i,f,s,d)) {
cout << std::get<0>(e) << ' '
<< std::get<1>(e) << ' '
<< std::get<2>(e) << ' '
<< std::get<3>(e) << '\n';
std::get<1>(e)=2.2f; // modifies the underlying 'f' array
}
Для библиотеки обработки потоков C++, которую я пишу, я искал решение, которое не зависит от сторонних библиотек и работает с произвольным числом контейнеров. Я закончил с этим решением. Это похоже на принятое решение, которое использует boost (а также приводит к неопределенному поведению, если длина контейнера не равна)
#include <utility>
namespace impl {
template <typename Iter, typename... Iters>
class zip_iterator {
public:
using value_type = std::tuple<const typename Iter::value_type&,
const typename Iters::value_type&...>;
zip_iterator(const Iter &head, const Iters&... tail)
: head_(head), tail_(tail...) { }
value_type operator*() const {
return std::tuple_cat(std::tuple<const typename Iter::value_type&>(*head_), *tail_);
}
zip_iterator& operator++() {
++head_; ++tail_;
return *this;
}
bool operator==(const zip_iterator &rhs) const {
return head_ == rhs.head_ && tail_ == rhs.tail_;
}
bool operator!=(const zip_iterator &rhs) const {
return !(*this == rhs);
}
private:
Iter head_;
zip_iterator<Iters...> tail_;
};
template <typename Iter>
class zip_iterator<Iter> {
public:
using value_type = std::tuple<const typename Iter::value_type&>;
zip_iterator(const Iter &head) : head_(head) { }
value_type operator*() const {
return value_type(*head_);
}
zip_iterator& operator++() { ++head_; return *this; }
bool operator==(const zip_iterator &rhs) const { return head_ == rhs.head_; }
bool operator!=(const zip_iterator &rhs) const { return !(*this == rhs); }
private:
Iter head_;
};
} // namespace impl
template <typename Iter>
class seq {
public:
using iterator = Iter;
seq(const Iter &begin, const Iter &end) : begin_(begin), end_(end) { }
iterator begin() const { return begin_; }
iterator end() const { return end_; }
private:
Iter begin_, end_;
};
/* WARNING: Undefined behavior if iterator lengths are different.
*/
template <typename... Seqs>
seq<impl::zip_iterator<typename Seqs::iterator...>>
zip(const Seqs&... seqs) {
return seq<impl::zip_iterator<typename Seqs::iterator...>>(
impl::zip_iterator<typename Seqs::iterator...>(std::begin(seqs)...),
impl::zip_iterator<typename Seqs::iterator...>(std::end(seqs)...));
}
Я бы предложил этот. Я нашел это довольно элегантным и именно тем, что мне (и вам) нужно.
https://github.com/CommitThis/zip-итератор
На всякий случай вот копия кода. Обратите внимание, он распространяется под лицензией MIT, также не забудьте указать имя автора.
zip.hpp
/***
* MIT License
* Author: G Davey
*/
#pragma once
#include <cassert>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <string>
#include <vector>
#include <typeinfo>
namespace c9 {
template <typename Iter>
using select_access_type_for = std::conditional_t<
std::is_same_v<Iter, std::vector<bool>::iterator> ||
std::is_same_v<Iter, std::vector<bool>::const_iterator>,
typename Iter::value_type,
typename Iter::reference
>;
template <typename ... Args, std::size_t ... Index>
auto any_match_impl(std::tuple<Args...> const & lhs,
std::tuple<Args...> const & rhs,
std::index_sequence<Index...>) -> bool
{
auto result = false;
result = (... | (std::get<Index>(lhs) == std::get<Index>(rhs)));
return result;
}
template <typename ... Args>
auto any_match(std::tuple<Args...> const & lhs, std::tuple<Args...> const & rhs)
-> bool
{
return any_match_impl(lhs, rhs, std::index_sequence_for<Args...>{});
}
template <typename ... Iters>
class zip_iterator
{
public:
using value_type = std::tuple<
select_access_type_for<Iters>...
>;
zip_iterator() = delete;
zip_iterator(Iters && ... iters)
: m_iters {std::forward<Iters>(iters)...}
{
}
auto operator++() -> zip_iterator&
{
std::apply([](auto && ... args){ ((args += 1), ...); }, m_iters);
return *this;
}
auto operator++(int) -> zip_iterator
{
auto tmp = *this;
++*this;
return tmp;
}
auto operator!=(zip_iterator const & other)
{
return !(*this == other);
}
auto operator==(zip_iterator const & other)
{
auto result = false;
return any_match(m_iters, other.m_iters);
}
auto operator*() -> value_type
{
return std::apply([](auto && ... args){
return value_type(*args...);
}, m_iters);
}
private:
std::tuple<Iters...> m_iters;
};
/* std::decay needed because T is a reference, and is not a complete type */
template <typename T>
using select_iterator_for = std::conditional_t<
std::is_const_v<std::remove_reference_t<T>>,
typename std::decay_t<T>::const_iterator,
typename std::decay_t<T>::iterator>;
template <typename ... T>
class zipper
{
public:
using zip_type = zip_iterator<select_iterator_for<T> ...>;
template <typename ... Args>
zipper(Args && ... args)
: m_args{std::forward<Args>(args)...}
{
}
auto begin() -> zip_type
{
return std::apply([](auto && ... args){
return zip_type(std::begin(args)...);
}, m_args);
}
auto end() -> zip_type
{
return std::apply([](auto && ... args){
return zip_type(std::end(args)...);
}, m_args);
}
private:
std::tuple<T ...> m_args;
};
template <typename ... T>
auto zip(T && ... t)
{
return zipper<T ...>{std::forward<T>(t)...};
}
}
Пример
#include "zip.hpp"
#include <vector>
std::vector<int> a, b, c;
void foo() {
for (auto && [x, y] : zip(a, b))
c.push_back(x + z);
}
Улучшение решения Ааронмана :
- Еще С++11.
- Нет рекурсивного расширения шаблона.
- Поддержка архивирования контейнеров.
- Использует подход знаменитого Шона Пэрента.
for_each_arg()
.
// Includes only required for the example main() below!
#include <vector>
#include <iostream>
namespace detail {
struct advance {
template <typename T> void operator()(T& t) const { ++t; }
};
// Adaptation of for_each_arg, see:
// https://isocpp.org/blog/2015/01/for-each-argument-sean-parent
template <class... Iterators>
void advance_all(Iterators&... iterators) {
[](...){}((advance{}(iterators), 0)...);
}
} // namespace detail
template <typename F, typename Iterator, typename ... ExtraIterators>
F for_each_zipped(
F func,
Iterator begin,
Iterator end,
ExtraIterators ... extra_iterators)
{
for(;begin != end; ++begin, detail::advance_all(extra_iterators...))
func(*begin, *(extra_iterators)... );
return func;
}
template <typename F, typename Container, typename... ExtraContainers>
F for_each_zipped_containers(
F func,
Container& container,
ExtraContainers& ... extra_containers)
{
return for_each_zipped(
func, std::begin(container), std::end(container), std::begin(extra_containers)...);
}
int main () {
std::vector<int> v1 { 1, 2, 3};
std::vector<int> v2 { 3, 2, 1};
std::vector<float> v3 {1.2, 2.4, 9.0};
std::vector<float> v4 {1.2, 2.4, 9.0};
auto print_quartet =
[](int i,int j,float k,float l) {
std::cout << i << " " << j << " " << k << " " << l << '\n';
};
std::cout << "Using zipped iterators:\n";
for_each_zipped(print_quartet, v1.begin(), v1.end(), v2.begin(), v3.begin(), v4.begin());
std::cout << "\nUsing zipped containers:\n";
for_each_zipped_containers(print_quartet, v1, v2, v3, v4);
}
Посмотрите, как это работает на GodBolt .
Boost.Iterators имеет zip_iterator
Вы можете использовать (пример в документах). Это не будет работать с диапазоном для, но вы можете использовать std::for_each
и лямбда.
Вот простая версия, которая не требует повышения. Он не будет особенно эффективным, поскольку создает временные значения и не обобщает другие контейнеры, кроме списков, но не имеет зависимостей и решает наиболее распространенный случай для архивирования.
template<class L, class R>
std::list< std::pair<L,R> > zip(std::list<L> left, std::list<R> right)
{
auto l = left.begin();
auto r = right.begin();
std::list< std::pair<L,R> > result;
while( l!=left.end() && r!=right.end() )
result.push_back( std::pair<L,R>( *(l++), *(r++) ) );
return result;
}
Хотя другие версии являются более гибкими, часто смысл использования оператора списка состоит в том, чтобы сделать простой однострочный. Эта версия имеет то преимущество, что общий случай прост.