Какой лучший алгоритм для переопределенного System.Object.GetHashCode?
В.NET System.Object.GetHashCode
Метод используется во многих местах, в библиотеках базовых классов.NET. Особенно при быстром поиске предметов в коллекции или для определения равенства. Существует ли стандартный алгоритм / лучшие практики по реализации GetHashCode
переопределить для моих пользовательских классов, чтобы я не снижал производительность?
22 ответа
Я обычно использую что-то вроде реализации, описанной в сказочной " Эффективной Java" Джоша Блоха. Это быстро и создает довольно хороший хеш, который вряд ли вызовет столкновения. Выберите два разных простых числа, например, 17 и 23, и выполните:
public override int GetHashCode()
{
unchecked // Overflow is fine, just wrap
{
int hash = 17;
// Suitable nullity checks etc, of course :)
hash = hash * 23 + field1.GetHashCode();
hash = hash * 23 + field2.GetHashCode();
hash = hash * 23 + field3.GetHashCode();
return hash;
}
}
Как отмечено в комментариях, вы можете найти, что вместо этого лучше выбрать большое простое число, на которое нужно умножить. Очевидно, что 486187739 - это хорошо... и хотя большинство примеров, которые я видел с небольшими числами, имеют тенденцию использовать простые числа, существуют, по крайней мере, похожие алгоритмы, где часто используются не простые числа. Например, в примере с не совсем FNV позже я использовал числа, которые, по-видимому, работают хорошо, но начальное значение не является простым. (Константа умножения проста, хотя. Я не знаю, насколько это важно.)
Это лучше, чем обычная практика XOR
хэш-коды по двум основным причинам. Предположим, у нас есть тип с двумя int
поля:
XorHash(x, x) == XorHash(y, y) == 0 for all x, y
XorHash(x, y) == XorHash(y, x) for all x, y
Кстати, более ранний алгоритм в настоящее время используется компилятором C# для анонимных типов.
Эта страница дает довольно много вариантов. Я думаю, что в большинстве случаев вышеприведенное "достаточно хорошо", и его невероятно легко запомнить и понять правильно. Альтернатива FNV также проста, но использует разные константы и XOR
вместо ADD
как операция объединения. Он выглядит примерно так, как показано ниже, но обычный алгоритм FNV работает с отдельными байтами, поэтому для этого потребуется модификация для выполнения одной итерации на байт вместо 32-битного хеш-значения. FNV также предназначен для переменных длин данных, тогда как мы используем его здесь всегда для одного и того же числа значений полей. Комментарии к этому ответу предполагают, что код здесь на самом деле не работает так же (в тестируемом примере), как описанный выше метод сложения.
// Note: Not quite FNV!
public override int GetHashCode()
{
unchecked // Overflow is fine, just wrap
{
int hash = (int) 2166136261;
// Suitable nullity checks etc, of course :)
hash = (hash * 16777619) ^ field1.GetHashCode();
hash = (hash * 16777619) ^ field2.GetHashCode();
hash = (hash * 16777619) ^ field3.GetHashCode();
return hash;
}
}
Обратите внимание, что следует помнить, что в идеале вы должны предотвращать изменение вашего чувствительного к равенству (и, следовательно, чувствительного к хеш-коду) состояния после добавления его в коллекцию, которая зависит от хеш-кода.
Согласно документации:
Вы можете переопределить GetHashCode для неизменяемых ссылочных типов. В общем, для изменяемых ссылочных типов вы должны переопределить GetHashCode, только если:
- Вы можете вычислить хеш-код из полей, которые не являются изменяемыми; или же
- Вы можете гарантировать, что хеш-код изменяемого объекта не изменится, пока объект содержится в коллекции, которая опирается на свой хеш-код.
Анонимный тип
Microsoft уже предоставляет хороший универсальный генератор HashCode: просто скопируйте значения вашего свойства / поля в анонимный тип и хешируйте его:
new { PropA, PropB, PropC, PropD }.GetHashCode();
Это будет работать для любого количества свойств. Он не использует бокс. Он просто использует алгоритм, уже реализованный в рамках для анонимных типов.
ValueTuple - обновление для C# 7
Как упоминает @cactuaroid в комментариях, можно использовать кортеж значения. Это экономит несколько нажатий клавиш и, что более важно, выполняется исключительно в стеке (без мусора):
(PropA, PropB, PropC, PropD).GetHashCode();
(Примечание: оригинальная методика, использующая анонимные типы, похоже, создает объект в куче, т.е. мусор, поскольку анонимные типы реализованы как классы, хотя это может быть оптимизировано компилятором. Было бы интересно сравнить эти параметры, но Вариант кортежа должен быть лучше.)
.NET Standard 2.1 и выше
Если вы используете.NET Standard 2.1 или выше, вы можете использовать структуру System.HashCode. Есть два способа его использования:
HashCode.Combine
В Combine
может использоваться для создания хэш-кода, содержащего до восьми объектов.
public override int GetHashCode() => HashCode.Combine(this.object1, this.object2);
HashCode.Add
В Add
помогает работать с коллекциями:
public override int GetHashCode()
{
var hashCode = new HashCode();
hashCode.Add(this.object1);
foreach (var item in this.collection)
{
hashCode.Add(item);
}
return hashCode.ToHashCode();
}
GetHashCode - это просто
Вы можете прочитать полную запись в блоге GetHashCode Made Easy для получения более подробной информации и комментариев.
Пример использования
public class SuperHero
{
public int Age { get; set; }
public string Name { get; set; }
public List<string> Powers { get; set; }
public override int GetHashCode() =>
HashCode.Of(this.Name).And(this.Age).AndEach(this.Powers);
}
Реализация
public struct HashCode : IEquatable<HashCode>
{
private const int EmptyCollectionPrimeNumber = 19;
private readonly int value;
private HashCode(int value) => this.value = value;
public static implicit operator int(HashCode hashCode) => hashCode.value;
public static bool operator ==(HashCode left, HashCode right) => left.Equals(right);
public static bool operator !=(HashCode left, HashCode right) => !(left == right);
public static HashCode Of<T>(T item) => new HashCode(GetHashCode(item));
public static HashCode OfEach<T>(IEnumerable<T> items) =>
items == null ? new HashCode(0) : new HashCode(GetHashCode(items, 0));
public HashCode And<T>(T item) =>
new HashCode(CombineHashCodes(this.value, GetHashCode(item)));
public HashCode AndEach<T>(IEnumerable<T> items)
{
if (items == null)
{
return new HashCode(this.value);
}
return new HashCode(GetHashCode(items, this.value));
}
public bool Equals(HashCode other) => this.value.Equals(other.value);
public override bool Equals(object obj)
{
if (obj is HashCode)
{
return this.Equals((HashCode)obj);
}
return false;
}
public override int GetHashCode() => this.value.GetHashCode();
private static int CombineHashCodes(int h1, int h2)
{
unchecked
{
// Code copied from System.Tuple a good way to combine hashes.
return ((h1 << 5) + h1) ^ h2;
}
}
private static int GetHashCode<T>(T item) => item?.GetHashCode() ?? 0;
private static int GetHashCode<T>(IEnumerable<T> items, int startHashCode)
{
var temp = startHashCode;
var enumerator = items.GetEnumerator();
if (enumerator.MoveNext())
{
temp = CombineHashCodes(temp, GetHashCode(enumerator.Current));
while (enumerator.MoveNext())
{
temp = CombineHashCodes(temp, GetHashCode(enumerator.Current));
}
}
else
{
temp = CombineHashCodes(temp, EmptyCollectionPrimeNumber);
}
return temp;
}
}
Что делает алгоритм хорошим?
Спектакль
Алгоритм, вычисляющий хэш-код, должен быть быстрым. Простой алгоритм обычно оказывается более быстрым. Тот, который не выделяет дополнительную память, также снизит потребность в сборке мусора, что, в свою очередь, также повысит производительность.
Детерминированный
Алгоритм хеширования должен быть детерминированным, т.е. при одном и том же вводе он всегда должен давать одинаковый вывод.
Уменьшить коллизии
Алгоритм, вычисляющий хэш-код, должен сводить к минимуму коллизии хеш-кода. Хеш-коллизия - это ситуация, которая возникает, когда два вызоваGetHashCode
на двух разных объектах производят одинаковые хэш-коды. Обратите внимание, что столкновения разрешены (у некоторых есть неправильное представление, что это не так), но их следует свести к минимуму.
Хорошая хеш-функция должна отображать ожидаемые входные данные как можно более равномерно по выходному диапазону. Он должен быть однородным.
Предотвратить DoS
В.NET Core каждый раз, когда вы перезапускаете приложение, вы будете получать разные хэш-коды. Это функция безопасности для предотвращения атак типа "отказ в обслуживании" (DoS). Для.NET Framework вы должны включить эту функцию, добавив следующий файл App.config:
<?xml version ="1.0"?>
<configuration>
<runtime>
<UseRandomizedStringHashAlgorithm enabled="1" />
</runtime>
</configuration>
Из-за этой функции хэш-коды никогда не следует использовать за пределами домена приложения, в котором они были созданы, они никогда не должны использоваться в качестве ключевых полей в коллекции и никогда не должны сохраняться.
Подробнее об этом читайте здесь.
Криптографически безопасный?
Алгоритм не обязательно должен быть криптографической хеш-функцией. Это означает, что он не должен удовлетворять следующим условиям:
- Невозможно сгенерировать сообщение, которое дает заданное значение хеш-функции
- Невозможно найти два разных сообщения с одинаковым значением хеш-функции.
- Небольшое изменение в сообщении должно настолько сильно изменить хеш-значение, что новое хеш-значение будет казаться некоррелированным со старым хеш-значением (эффект лавины).
Вот мой помощник хеш-кода.
Преимущество состоит в том, что он использует аргументы универсального типа и поэтому не будет вызывать бокс:
public static class HashHelper
{
public static int GetHashCode<T1, T2>(T1 arg1, T2 arg2)
{
unchecked
{
return 31 * arg1.GetHashCode() + arg2.GetHashCode();
}
}
public static int GetHashCode<T1, T2, T3>(T1 arg1, T2 arg2, T3 arg3)
{
unchecked
{
int hash = arg1.GetHashCode();
hash = 31 * hash + arg2.GetHashCode();
return 31 * hash + arg3.GetHashCode();
}
}
public static int GetHashCode<T1, T2, T3, T4>(T1 arg1, T2 arg2, T3 arg3,
T4 arg4)
{
unchecked
{
int hash = arg1.GetHashCode();
hash = 31 * hash + arg2.GetHashCode();
hash = 31 * hash + arg3.GetHashCode();
return 31 * hash + arg4.GetHashCode();
}
}
public static int GetHashCode<T>(T[] list)
{
unchecked
{
int hash = 0;
foreach (var item in list)
{
hash = 31 * hash + item.GetHashCode();
}
return hash;
}
}
public static int GetHashCode<T>(IEnumerable<T> list)
{
unchecked
{
int hash = 0;
foreach (var item in list)
{
hash = 31 * hash + item.GetHashCode();
}
return hash;
}
}
/// <summary>
/// Gets a hashcode for a collection for that the order of items
/// does not matter.
/// So {1, 2, 3} and {3, 2, 1} will get same hash code.
/// </summary>
public static int GetHashCodeForOrderNoMatterCollection<T>(
IEnumerable<T> list)
{
unchecked
{
int hash = 0;
int count = 0;
foreach (var item in list)
{
hash += item.GetHashCode();
count++;
}
return 31 * hash + count.GetHashCode();
}
}
/// <summary>
/// Alternative way to get a hashcode is to use a fluent
/// interface like this:<br />
/// return 0.CombineHashCode(field1).CombineHashCode(field2).
/// CombineHashCode(field3);
/// </summary>
public static int CombineHashCode<T>(this int hashCode, T arg)
{
unchecked
{
return 31 * hashCode + arg.GetHashCode();
}
}
Также он имеет метод расширения для обеспечения свободного интерфейса, так что вы можете использовать его следующим образом:
public override int GetHashCode()
{
return HashHelper.GetHashCode(Manufacturer, PartN, Quantity);
}
или вот так:
public override int GetHashCode()
{
return 0.CombineHashCode(Manufacturer)
.CombineHashCode(PartN)
.CombineHashCode(Quantity);
}
У меня есть класс Hashing в библиотеке Helper, который я использую для этой цели.
/// <summary>
/// This is a simple hashing function from Robert Sedgwicks Hashing in C book.
/// Also, some simple optimizations to the algorithm in order to speed up
/// its hashing process have been added. from: www.partow.net
/// </summary>
/// <param name="input">array of objects, parameters combination that you need
/// to get a unique hash code for them</param>
/// <returns>Hash code</returns>
public static int RSHash(params object[] input)
{
const int b = 378551;
int a = 63689;
int hash = 0;
// If it overflows then just wrap around
unchecked
{
for (int i = 0; i < input.Length; i++)
{
if (input[i] != null)
{
hash = hash * a + input[i].GetHashCode();
a = a * b;
}
}
}
return hash;
}
Тогда просто вы можете использовать его как:
public override int GetHashCode()
{
return Hashing.RSHash(_field1, _field2, _field3);
}
Я не оценивал его производительность, поэтому любые отзывы приветствуются.
Вот мой вспомогательный класс, использующий реализацию Джона Скита.
public static class HashCode
{
public const int Start = 17;
public static int Hash<T>(this int hash, T obj)
{
var h = EqualityComparer<T>.Default.GetHashCode(obj);
return unchecked((hash * 31) + h);
}
}
Использование:
public override int GetHashCode()
{
return HashCode.Start
.Hash(_field1)
.Hash(_field2)
.Hash(_field3);
}
Если вы хотите избежать написания метода расширения для System.Int32:
public struct HashCode
{
private readonly int _value;
public HashCode(int value) => _value = value;
public static HashCode Start { get; } = new HashCode(17);
public static implicit operator int(HashCode hash) => hash._value;
public HashCode Hash<T>(T obj)
{
var h = EqualityComparer<T>.Default.GetHashCode(obj);
return unchecked(new HashCode((_value * 31) + h));
}
public override int GetHashCode() => _value;
}
Он по-прежнему является общим, он по-прежнему избегает выделения кучи и используется точно так же:
public override int GetHashCode()
{
// This time `HashCode.Start` is not an `Int32`, it's a `HashCode` instance.
// And the result is implicitly converted to `Int32`.
return HashCode.Start
.Hash(_field1)
.Hash(_field2)
.Hash(_field3);
}
Обновление после комментария Мартина:
obj != null
вызвал бокс, поэтому я переключился на компаратор по умолчанию.
- Смотрите этот ответ относительно производительности по умолчанию для сравнения.
- Посмотрите этот вопрос для обсуждения о хэш-кодах нулевых значений.
Изменить (май 2018 года):
EqualityComparer<T>.Default
getter теперь является внутренним свойством JIT - запрос на извлечение упоминается Стивеном Таубом в этом сообщении в блоге.
В большинстве случаев, когда Equals() сравнивает несколько полей, на самом деле не имеет значения, хеширует ли ваш GetHash () одно или несколько полей. Вам просто нужно убедиться, что вычисление хеша действительно дешево (без выделения ресурсов, пожалуйста) и быстро (без сложных вычислений и, конечно, без соединений с базой данных) и обеспечивает хорошее распределение.
Поднятие тяжестей должно быть частью метода Equals(); хеш должен быть очень дешевой операцией, чтобы можно было вызывать Equals() для как можно меньшего числа элементов.
И последний совет: не надейтесь, что GetHashCode() будет стабильным в течение нескольких запусков приложений. Многие типы.Net не гарантируют, что их хэш-коды останутся такими же после перезапуска, поэтому вы должны использовать только значение GetHashCode() для структур данных памяти.
До недавнего времени мой ответ был очень близок к ответу Джона Скита. Тем не менее, я недавно начал проект, в котором использовались хеш-таблицы степени двойки, то есть хеш-таблицы, где размер внутренней таблицы равен 8, 16, 32 и т. Д. Есть веская причина для предпочтения размеров простых чисел, но есть Есть некоторые преимущества для степени двух размеров тоже.
И это в значительной степени отстой. Поэтому после небольшого количества экспериментов и исследований я начал перефразировать свои хэши следующим образом:
public static int ReHash(int source)
{
unchecked
{
ulong c = 0xDEADBEEFDEADBEEF + (ulong)source;
ulong d = 0xE2ADBEEFDEADBEEF ^ c;
ulong a = d += c = c << 15 | c >> -15;
ulong b = a += d = d << 52 | d >> -52;
c ^= b += a = a << 26 | a >> -26;
d ^= c += b = b << 51 | b >> -51;
a ^= d += c = c << 28 | c >> -28;
b ^= a += d = d << 9 | d >> -9;
c ^= b += a = a << 47 | a >> -47;
d ^= c += b << 54 | b >> -54;
a ^= d += c << 32 | c >> 32;
a += d << 25 | d >> -25;
return (int)(a >> 1);
}
}
И тогда мой хэш-стол с степенью двойки больше не сосал.
Это беспокоило меня, хотя, потому что выше не должно работать. Или, точнее, он не должен работать, если оригинал GetHashCode()
был бедным в особом смысле.
Повторное смешивание хеш-кода не может улучшить отличный хеш-код, потому что единственный возможный эффект - это введение нескольких коллизий.
Повторное смешивание хеш-кода не может улучшить ужасный хеш-код, потому что единственный возможный эффект - это изменение, например, большого количества коллизий со значением 53 на большое число со значением 18,3487,291.
Повторное смешивание хеш-кода может улучшить только хеш-код, который, по крайней мере, довольно хорошо избежал абсолютных коллизий по всему диапазону (232 возможных значения), но плохо избежал коллизий, когда по модулю был выключен для фактического использования в хеш-таблице. Хотя более простой модуль таблицы степеней двух сделал это более очевидным, он также имел отрицательный эффект с более распространенными таблицами простых чисел, что было не так очевидно (дополнительная работа по перефразировке перевесила бы преимущество, но выгода все равно будет там).
Редактировать: я также использовал открытую адресацию, что также увеличило бы чувствительность к столкновениям, возможно, даже больше, чем факт, что это была степень двойки.
И хорошо, это было тревожно, насколько string.GetHashCode()
реализации в .NET (или исследование здесь) могут быть улучшены таким образом (порядка тестов, выполняющихся примерно в 20-30 раз быстрее из-за меньшего количества коллизий), и больше беспокоит то, насколько мои собственные хэш-коды могут быть улучшены (гораздо больше).,
Все реализации GetHashCode(), которые я кодировал в прошлом и действительно использовал в качестве основы для ответов на этом сайте, были намного хуже, чем я думал. Большую часть времени это было "достаточно хорошо" для большей части использования, но я хотел чего-то лучшего.
Поэтому я отложил этот проект в сторону (в любом случае, это был любимый проект) и начал искать способы быстрого создания хорошего, хорошо распределенного хеш-кода в.NET.
В конце концов я остановился на портировании SpookyHash на.NET. Действительно, приведенный выше код является версией быстрого использования SpookyHash для получения 32-битного вывода из 32-битного ввода.
Теперь SpookyHash - это не просто быстрый фрагмент кода. Мой порт этого еще меньше, потому что я много чего вписал вручную для лучшей скорости *. Но для этого и нужно повторное использование кода.
Затем я отложил этот проект в сторону, потому что так же, как исходный проект породил вопрос о том, как создать лучший хеш-код, так и этот проект поставил вопрос о том, как создать лучшую.NET memcpy.
Затем я вернулся и произвел много перегрузок, чтобы легко кормить практически все нативные типы (кроме decimal
†) в хеш-код.
Это быстро, за что Боб Дженкинс заслуживает большей части уважения, потому что его оригинальный код, с которого я портировал, еще быстрее, особенно на 64-битных машинах, алгоритм которых оптимизирован для ‡.
Полный код можно увидеть по адресу https://bitbucket.org/JonHanna/spookilysharp/src но учтите, что приведенный выше код является его упрощенной версией.
Однако, поскольку он уже написан, его можно использовать проще:
public override int GetHashCode()
{
var hash = new SpookyHash();
hash.Update(field1);
hash.Update(field2);
hash.Update(field3);
return hash.Final().GetHashCode();
}
Он также принимает начальные значения, поэтому, если вам нужно иметь дело с ненадежным вводом и хотите защитить от атак Hash DoS, вы можете установить начальное время на основе времени безотказной работы или аналогичного, а также сделать результаты непредсказуемыми для злоумышленников:
private static long hashSeed0 = Environment.TickCount;
private static long hashSeed1 = DateTime.Now.Ticks;
public override int GetHashCode()
{
//produce different hashes ever time this application is restarted
//but remain consistent in each run, so attackers have a harder time
//DoSing the hash tables.
var hash = new SpookyHash(hashSeed0, hashSeed1);
hash.Update(field1);
hash.Update(field2);
hash.Update(field3);
return hash.Final().GetHashCode();
}
* Большим сюрпризом в этом является то, что ручной метод вращения, который возвратил (x << n) | (x >> -n)
улучшенные вещи. Я был бы уверен, что дрожание указало бы на это для меня, но профилирование показало обратное.
†decimal
не является родным с точки зрения.NET, хотя это с C#. Проблема в том, что его собственный GetHashCode()
трактует точность как значимую, а свою собственную Equals()
не. Оба являются допустимыми, но не смешанными. При реализации своей собственной версии вам нужно выбрать одну или другую, но я не могу знать, что вы хотите.
‡ Для сравнения. Если используется строка, SpookyHash на 64 битах значительно быстрее, чем string.GetHashCode()
на 32 бита, что немного быстрее, чем string.GetHashCode()
на 64 битах, что значительно быстрее, чем SpookyHash на 32 битах, хотя все еще достаточно быстро, чтобы быть разумным выбором.
Начиная с https://github.com/dotnet/coreclr/pull/14863, существует новый способ генерации хеш-кодов, который очень прост! Просто пиши
public override int GetHashCode()
=> HashCode.Combine(field1, field2, field3);
Это сгенерирует качественный хеш-код без необходимости беспокоиться о деталях реализации.
Это хороший:
/// <summary>
/// Helper class for generating hash codes suitable
/// for use in hashing algorithms and data structures like a hash table.
/// </summary>
public static class HashCodeHelper
{
private static int GetHashCodeInternal(int key1, int key2)
{
unchecked
{
var num = 0x7e53a269;
num = (-1521134295 * num) + key1;
num += (num << 10);
num ^= (num >> 6);
num = ((-1521134295 * num) + key2);
num += (num << 10);
num ^= (num >> 6);
return num;
}
}
/// <summary>
/// Returns a hash code for the specified objects
/// </summary>
/// <param name="arr">An array of objects used for generating the
/// hash code.</param>
/// <returns>
/// A hash code, suitable for use in hashing algorithms and data
/// structures like a hash table.
/// </returns>
public static int GetHashCode(params object[] arr)
{
int hash = 0;
foreach (var item in arr)
hash = GetHashCodeInternal(hash, item.GetHashCode());
return hash;
}
/// <summary>
/// Returns a hash code for the specified objects
/// </summary>
/// <param name="obj1">The first object.</param>
/// <param name="obj2">The second object.</param>
/// <param name="obj3">The third object.</param>
/// <param name="obj4">The fourth object.</param>
/// <returns>
/// A hash code, suitable for use in hashing algorithms and
/// data structures like a hash table.
/// </returns>
public static int GetHashCode<T1, T2, T3, T4>(T1 obj1, T2 obj2, T3 obj3,
T4 obj4)
{
return GetHashCode(obj1, GetHashCode(obj2, obj3, obj4));
}
/// <summary>
/// Returns a hash code for the specified objects
/// </summary>
/// <param name="obj1">The first object.</param>
/// <param name="obj2">The second object.</param>
/// <param name="obj3">The third object.</param>
/// <returns>
/// A hash code, suitable for use in hashing algorithms and data
/// structures like a hash table.
/// </returns>
public static int GetHashCode<T1, T2, T3>(T1 obj1, T2 obj2, T3 obj3)
{
return GetHashCode(obj1, GetHashCode(obj2, obj3));
}
/// <summary>
/// Returns a hash code for the specified objects
/// </summary>
/// <param name="obj1">The first object.</param>
/// <param name="obj2">The second object.</param>
/// <returns>
/// A hash code, suitable for use in hashing algorithms and data
/// structures like a hash table.
/// </returns>
public static int GetHashCode<T1, T2>(T1 obj1, T2 obj2)
{
return GetHashCodeInternal(obj1.GetHashCode(), obj2.GetHashCode());
}
}
А вот как это использовать:
private struct Key
{
private Type _type;
private string _field;
public Type Type { get { return _type; } }
public string Field { get { return _field; } }
public Key(Type type, string field)
{
_type = type;
_field = field;
}
public override int GetHashCode()
{
return HashCodeHelper.GetHashCode(_field, _type);
}
public override bool Equals(object obj)
{
if (!(obj is Key))
return false;
var tf = (Key)obj;
return tf._field.Equals(_field) && tf._type.Equals(_type);
}
}
Вот еще одна свободная реализация алгоритма, опубликованная выше Джоном Скитом, но которая не включает в себя операции выделения и упаковки:
public static class Hash
{
public const int Base = 17;
public static int HashObject(this int hash, object obj)
{
unchecked { return hash * 23 + (obj == null ? 0 : obj.GetHashCode()); }
}
public static int HashValue<T>(this int hash, T value)
where T : struct
{
unchecked { return hash * 23 + value.GetHashCode(); }
}
}
Использование:
public class MyType<T>
{
public string Name { get; set; }
public string Description { get; set; }
public int Value { get; set; }
public IEnumerable<T> Children { get; set; }
public override int GetHashCode()
{
return Hash.Base
.HashObject(this.Name)
.HashObject(this.Description)
.HashValue(this.Value)
.HashObject(this.Children);
}
}
Компилятор обеспечит HashValue
не вызывается с классом из-за ограничения общего типа. Но компилятор не поддерживает HashObject
поскольку добавление универсального аргумента также добавляет операцию бокса.
Вот мой упрощенный подход. Я использую классический шаблон строителя для этого. Он безопасен для типов (без упаковки / распаковки), а также совместим с.NET 2.0 (без методов расширения и т. Д.).
Используется так:
public override int GetHashCode()
{
HashBuilder b = new HashBuilder();
b.AddItems(this.member1, this.member2, this.member3);
return b.Result;
}
А вот класс острых строителей:
internal class HashBuilder
{
private const int Prime1 = 17;
private const int Prime2 = 23;
private int result = Prime1;
public HashBuilder()
{
}
public HashBuilder(int startHash)
{
this.result = startHash;
}
public int Result
{
get
{
return this.result;
}
}
public void AddItem<T>(T item)
{
unchecked
{
this.result = this.result * Prime2 + item.GetHashCode();
}
}
public void AddItems<T1, T2>(T1 item1, T2 item2)
{
this.AddItem(item1);
this.AddItem(item2);
}
public void AddItems<T1, T2, T3>(T1 item1, T2 item2, T3 item3)
{
this.AddItem(item1);
this.AddItem(item2);
this.AddItem(item3);
}
public void AddItems<T1, T2, T3, T4>(T1 item1, T2 item2, T3 item3,
T4 item4)
{
this.AddItem(item1);
this.AddItem(item2);
this.AddItem(item3);
this.AddItem(item4);
}
public void AddItems<T1, T2, T3, T4, T5>(T1 item1, T2 item2, T3 item3,
T4 item4, T5 item5)
{
this.AddItem(item1);
this.AddItem(item2);
this.AddItem(item3);
this.AddItem(item4);
this.AddItem(item5);
}
public void AddItems<T>(params T[] items)
{
foreach (T item in items)
{
this.AddItem(item);
}
}
}
Если у нас есть не более 8 свойств (надеюсь), здесь есть другая альтернатива.
ValueTuple
является структурой и, кажется, имеет твердое тело GetHashCode
реализация.
Это означает, что мы могли бы просто сделать это:
// Yay, no allocations and no custom implementations!
public override int GetHashCode() => (this.PropA, this.PropB).GetHashCode();
Давайте посмотрим на текущую реализацию.NET Core для ValueTuple
"s GetHashCode
,
Это из ValueTuple
:
internal static int CombineHashCodes(int h1, int h2)
{
return HashHelpers.Combine(HashHelpers.Combine(HashHelpers.RandomSeed, h1), h2);
}
internal static int CombineHashCodes(int h1, int h2, int h3)
{
return HashHelpers.Combine(CombineHashCodes(h1, h2), h3);
}
И это из HashHelper
:
public static readonly int RandomSeed = Guid.NewGuid().GetHashCode();
public static int Combine(int h1, int h2)
{
unchecked
{
// RyuJIT optimizes this to use the ROL instruction
// Related GitHub pull request: dotnet/coreclr#1830
uint rol5 = ((uint)h1 << 5) | ((uint)h1 >> 27);
return ((int)rol5 + h1) ^ h2;
}
}
По-английски:
- Поворот влево (круговое смещение) h1 на 5 позиций.
- Добавьте результат и h1 вместе.
- XOR результат с h2.
- Начните с выполнения вышеуказанной операции с { static random seed, h1 }.
- Для каждого следующего элемента выполните операцию с предыдущим результатом и следующим элементом (например, h2).
Было бы неплохо узнать больше о свойствах этого алгоритма хеширования ROL-5.
К сожалению, откладывая ValueTuple
для наших GetHashCode
может быть не так быстро, как хотелось бы и ожидать. Этот комментарий в связанном обсуждении показывает, что прямой вызов HashHelpers.Combine
более производительный. С другой стороны, это внутреннее, поэтому нам пришлось бы копировать код, жертвуя большей частью того, что мы получили здесь. Кроме того, мы будем нести ответственность за запоминание в первую очередь Combine
со случайным семенем. Я не знаю, каковы будут последствия, если мы пропустим этот шаг.
Пользователи ReSharper могут генерировать GetHashCode, Equals и другие с ReSharper -> Edit -> Generate Code -> Equality Members
,
// ReSharper's GetHashCode looks like this
public override int GetHashCode() {
unchecked {
int hashCode = Id;
hashCode = (hashCode * 397) ^ IntMember;
hashCode = (hashCode * 397) ^ OtherIntMember;
hashCode = (hashCode * 397) ^ (RefMember != null ? RefMember.GetHashCode() : 0);
// ...
return hashCode;
}
}
Большая часть моей работы выполняется с подключением к базе данных, что означает, что все мои классы имеют уникальный идентификатор из базы данных. Я всегда использую идентификатор из базы данных для генерации хэш-кода.
// Unique ID from database
private int _id;
...
{
return _id.GetHashCode();
}
Очень похоже на решение ночного кодера, за исключением того, что проще поднимать простые числа, если хотите.
PS: Это один из тех случаев, когда вы немного рвете, зная, что это может быть реорганизовано в один метод с 9 значениями по умолчанию, но это будет медленнее, поэтому вы просто закрываете глаза и пытаетесь забыть об этом.
/// <summary>
/// Try not to look at the source code. It works. Just rely on it.
/// </summary>
public static class HashHelper
{
private const int PrimeOne = 17;
private const int PrimeTwo = 23;
public static int GetHashCode<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>(T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6, T7 arg7, T8 arg8, T9 arg9, T10 arg10)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
hash = hash * PrimeTwo + arg3.GetHashCode();
hash = hash * PrimeTwo + arg4.GetHashCode();
hash = hash * PrimeTwo + arg5.GetHashCode();
hash = hash * PrimeTwo + arg6.GetHashCode();
hash = hash * PrimeTwo + arg7.GetHashCode();
hash = hash * PrimeTwo + arg8.GetHashCode();
hash = hash * PrimeTwo + arg9.GetHashCode();
hash = hash * PrimeTwo + arg10.GetHashCode();
return hash;
}
}
public static int GetHashCode<T1, T2, T3, T4, T5, T6, T7, T8, T9>(T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6, T7 arg7, T8 arg8, T9 arg9)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
hash = hash * PrimeTwo + arg3.GetHashCode();
hash = hash * PrimeTwo + arg4.GetHashCode();
hash = hash * PrimeTwo + arg5.GetHashCode();
hash = hash * PrimeTwo + arg6.GetHashCode();
hash = hash * PrimeTwo + arg7.GetHashCode();
hash = hash * PrimeTwo + arg8.GetHashCode();
hash = hash * PrimeTwo + arg9.GetHashCode();
return hash;
}
}
public static int GetHashCode<T1, T2, T3, T4, T5, T6, T7, T8>(T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6, T7 arg7, T8 arg8)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
hash = hash * PrimeTwo + arg3.GetHashCode();
hash = hash * PrimeTwo + arg4.GetHashCode();
hash = hash * PrimeTwo + arg5.GetHashCode();
hash = hash * PrimeTwo + arg6.GetHashCode();
hash = hash * PrimeTwo + arg7.GetHashCode();
hash = hash * PrimeTwo + arg8.GetHashCode();
return hash;
}
}
public static int GetHashCode<T1, T2, T3, T4, T5, T6, T7>(T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6, T7 arg7)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
hash = hash * PrimeTwo + arg3.GetHashCode();
hash = hash * PrimeTwo + arg4.GetHashCode();
hash = hash * PrimeTwo + arg5.GetHashCode();
hash = hash * PrimeTwo + arg6.GetHashCode();
hash = hash * PrimeTwo + arg7.GetHashCode();
return hash;
}
}
public static int GetHashCode<T1, T2, T3, T4, T5, T6>(T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
hash = hash * PrimeTwo + arg3.GetHashCode();
hash = hash * PrimeTwo + arg4.GetHashCode();
hash = hash * PrimeTwo + arg5.GetHashCode();
hash = hash * PrimeTwo + arg6.GetHashCode();
return hash;
}
}
public static int GetHashCode<T1, T2, T3, T4, T5>(T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
hash = hash * PrimeTwo + arg3.GetHashCode();
hash = hash * PrimeTwo + arg4.GetHashCode();
hash = hash * PrimeTwo + arg5.GetHashCode();
return hash;
}
}
public static int GetHashCode<T1, T2, T3, T4>(T1 arg1, T2 arg2, T3 arg3, T4 arg4)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
hash = hash * PrimeTwo + arg3.GetHashCode();
hash = hash * PrimeTwo + arg4.GetHashCode();
return hash;
}
}
public static int GetHashCode<T1, T2, T3>(T1 arg1, T2 arg2, T3 arg3)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
hash = hash * PrimeTwo + arg3.GetHashCode();
return hash;
}
}
public static int GetHashCode<T1, T2>(T1 arg1, T2 arg2)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
return hash;
}
}
}
Microsoft привела к нескольким способам хеширования...
//for classes that contain a single int value
return this.value;
//for classes that contain multiple int value
return x ^ y;
//for classes that contain single number bigger than int
return ((int)value ^ (int)(value >> 32));
//for classes that contain class instance fields which inherit from object
return obj1.GetHashCode();
//for classes that contain multiple class instance fields which inherit from object
return obj1.GetHashCode() ^ obj2.GetHashCode() ^ obj3.GetHashCode();
Я могу догадаться, что для нескольких больших int вы можете использовать это:
int a=((int)value1 ^ (int)(value1 >> 32));
int b=((int)value2 ^ (int)(value2 >> 32));
int c=((int)value3 ^ (int)(value3 >> 32));
return a ^ b ^ c;
И то же самое для мультитипа: все сначала преобразуются в int
с помощью GetHashCode()
тогда значения int будут xor'ed, и результатом будет ваш хеш.
Для тех, кто использует хэш в качестве идентификатора (я имею в виду уникальное значение), хэш естественно ограничен количеством цифр, я думаю, что это было 5 байтов для алгоритма хеширования, по крайней мере, MD5.
Вы можете превратить несколько значений в хэшированное значение, и некоторые из них будут одинаковыми, поэтому не используйте его в качестве идентификатора. (возможно когда-нибудь я собираюсь использовать ваш компонент)
Я столкнулся с проблемой с плавающей запятой и десятичной дробью, используя реализацию, выбранную в качестве ответа выше.
Этот тест не пройден (с плавающей точкой; хеш-код остается тем же, хотя я переключил 2 значения на отрицательное)
var obj1 = new { A = 100m, B = 100m, C = 100m, D = 100m};
var obj2 = new { A = 100m, B = 100m, C = -100m, D = -100m};
var hash1 = ComputeHash(obj1.A, obj1.B, obj1.C, obj1.D);
var hash2 = ComputeHash(obj2.A, obj2.B, obj2.C, obj2.D);
Assert.IsFalse(hash1 == hash2, string.Format("Hashcode values should be different hash1:{0} hash2:{1}",hash1,hash2));
Но этот тест проходит (с целыми числами):
var obj1 = new { A = 100m, B = 100m, C = 100, D = 100};
var obj2 = new { A = 100m, B = 100m, C = -100, D = -100};
var hash1 = ComputeHash(obj1.A, obj1.B, obj1.C, obj1.D);
var hash2 = ComputeHash(obj2.A, obj2.B, obj2.C, obj2.D);
Assert.IsFalse(hash1 == hash2, string.Format("Hashcode values should be different hash1:{0} hash2:{1}",hash1,hash2));
Я изменил свою реализацию, чтобы не использовать GetHashCode для примитивных типов, и кажется, что она работает лучше
private static int InternalComputeHash(params object[] obj)
{
unchecked
{
var result = (int)SEED_VALUE_PRIME;
for (uint i = 0; i < obj.Length; i++)
{
var currval = result;
var nextval = DetermineNextValue(obj[i]);
result = (result * MULTIPLIER_VALUE_PRIME) + nextval;
}
return result;
}
}
private static int DetermineNextValue(object value)
{
unchecked
{
int hashCode;
if (value is short
|| value is int
|| value is byte
|| value is sbyte
|| value is uint
|| value is ushort
|| value is ulong
|| value is long
|| value is float
|| value is double
|| value is decimal)
{
return Convert.ToInt32(value);
}
else
{
return value != null ? value.GetHashCode() : 0;
}
}
}
Это статический вспомогательный класс, который реализует реализацию Джоша Блоха; и обеспечивает явные перегрузки для "предотвращения" упаковки, а также для реализации хеша специально для длинных примитивов.
Вы можете передать сравнение строк, соответствующее вашей реализации equals.
Поскольку выход Hash всегда является int, вы можете просто связывать вызовы Hash.
using System;
using System.Collections;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.CompilerServices;
namespace Sc.Util.System
{
/// <summary>
/// Static methods that allow easy implementation of hashCode. Example usage:
/// <code>
/// public override int GetHashCode()
/// => HashCodeHelper.Seed
/// .Hash(primitiveField)
/// .Hsh(objectField)
/// .Hash(iEnumerableField);
/// </code>
/// </summary>
public static class HashCodeHelper
{
/// <summary>
/// An initial value for a hashCode, to which is added contributions from fields.
/// Using a non-zero value decreases collisions of hashCode values.
/// </summary>
public const int Seed = 23;
private const int oddPrimeNumber = 37;
/// <summary>
/// Rotates the seed against a prime number.
/// </summary>
/// <param name="aSeed">The hash's first term.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static int rotateFirstTerm(int aSeed)
{
unchecked {
return HashCodeHelper.oddPrimeNumber * aSeed;
}
}
/// <summary>
/// Contributes a boolean to the developing HashCode seed.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aBoolean">The value to contribute.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(this int aSeed, bool aBoolean)
{
unchecked {
return HashCodeHelper.rotateFirstTerm(aSeed)
+ (aBoolean
? 1
: 0);
}
}
/// <summary>
/// Contributes a char to the developing HashCode seed.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aChar">The value to contribute.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(this int aSeed, char aChar)
{
unchecked {
return HashCodeHelper.rotateFirstTerm(aSeed)
+ aChar;
}
}
/// <summary>
/// Contributes an int to the developing HashCode seed.
/// Note that byte and short are handled by this method, through implicit conversion.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aInt">The value to contribute.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(this int aSeed, int aInt)
{
unchecked {
return HashCodeHelper.rotateFirstTerm(aSeed)
+ aInt;
}
}
/// <summary>
/// Contributes a long to the developing HashCode seed.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aLong">The value to contribute.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(this int aSeed, long aLong)
{
unchecked {
return HashCodeHelper.rotateFirstTerm(aSeed)
+ (int)(aLong ^ (aLong >> 32));
}
}
/// <summary>
/// Contributes a float to the developing HashCode seed.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aFloat">The value to contribute.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(this int aSeed, float aFloat)
{
unchecked {
return HashCodeHelper.rotateFirstTerm(aSeed)
+ Convert.ToInt32(aFloat);
}
}
/// <summary>
/// Contributes a double to the developing HashCode seed.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aDouble">The value to contribute.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(this int aSeed, double aDouble)
=> aSeed.Hash(Convert.ToInt64(aDouble));
/// <summary>
/// Contributes a string to the developing HashCode seed.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aString">The value to contribute.</param>
/// <param name="stringComparison">Optional comparison that creates the hash.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(
this int aSeed,
string aString,
StringComparison stringComparison = StringComparison.Ordinal)
{
if (aString == null)
return aSeed.Hash(0);
switch (stringComparison) {
case StringComparison.CurrentCulture :
return StringComparer.CurrentCulture.GetHashCode(aString);
case StringComparison.CurrentCultureIgnoreCase :
return StringComparer.CurrentCultureIgnoreCase.GetHashCode(aString);
case StringComparison.InvariantCulture :
return StringComparer.InvariantCulture.GetHashCode(aString);
case StringComparison.InvariantCultureIgnoreCase :
return StringComparer.InvariantCultureIgnoreCase.GetHashCode(aString);
case StringComparison.OrdinalIgnoreCase :
return StringComparer.OrdinalIgnoreCase.GetHashCode(aString);
default :
return StringComparer.Ordinal.GetHashCode(aString);
}
}
/// <summary>
/// Contributes a possibly-null array to the developing HashCode seed.
/// Each element may be a primitive, a reference, or a possibly-null array.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aArray">CAN be null.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(this int aSeed, IEnumerable aArray)
{
if (aArray == null)
return aSeed.Hash(0);
int countPlusOne = 1; // So it differs from null
foreach (object item in aArray) {
++countPlusOne;
if (item is IEnumerable arrayItem) {
if (!object.ReferenceEquals(aArray, arrayItem))
aSeed = aSeed.Hash(arrayItem); // recursive call!
} else
aSeed = aSeed.Hash(item);
}
return aSeed.Hash(countPlusOne);
}
/// <summary>
/// Contributes a possibly-null array to the developing HashCode seed.
/// You must provide the hash function for each element.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aArray">CAN be null.</param>
/// <param name="hashElement">Required: yields the hash for each element
/// in <paramref name="aArray"/>.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash<T>(this int aSeed, IEnumerable<T> aArray, Func<T, int> hashElement)
{
if (aArray == null)
return aSeed.Hash(0);
int countPlusOne = 1; // So it differs from null
foreach (T item in aArray) {
++countPlusOne;
aSeed = aSeed.Hash(hashElement(item));
}
return aSeed.Hash(countPlusOne);
}
/// <summary>
/// Contributes a possibly-null object to the developing HashCode seed.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aObject">CAN be null.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(this int aSeed, object aObject)
{
switch (aObject) {
case null :
return aSeed.Hash(0);
case bool b :
return aSeed.Hash(b);
case char c :
return aSeed.Hash(c);
case int i :
return aSeed.Hash(i);
case long l :
return aSeed.Hash(l);
case float f :
return aSeed.Hash(f);
case double d :
return aSeed.Hash(d);
case string s :
return aSeed.Hash(s);
case IEnumerable iEnumerable :
return aSeed.Hash(iEnumerable);
}
return aSeed.Hash(aObject.GetHashCode());
}
/// <summary>
/// This utility method uses reflection to iterate all specified properties that are readable
/// on the given object, excluding any property names given in the params arguments, and
/// generates a hashcode.
/// </summary>
/// <param name="aSeed">The developing hash code, or the seed: if you have no seed, use
/// the <see cref="Seed"/>.</param>
/// <param name="aObject">CAN be null.</param>
/// <param name="propertySelector"><see cref="BindingFlags"/> to select the properties to hash.</param>
/// <param name="ignorePropertyNames">Optional.</param>
/// <returns>A hash from the properties contributed to <c>aSeed</c>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int HashAllProperties(
this int aSeed,
object aObject,
BindingFlags propertySelector
= BindingFlags.Instance
| BindingFlags.Public
| BindingFlags.GetProperty,
params string[] ignorePropertyNames)
{
if (aObject == null)
return aSeed.Hash(0);
if ((ignorePropertyNames != null)
&& (ignorePropertyNames.Length != 0)) {
foreach (PropertyInfo propertyInfo in aObject.GetType()
.GetProperties(propertySelector)) {
if (!propertyInfo.CanRead
|| (Array.IndexOf(ignorePropertyNames, propertyInfo.Name) >= 0))
continue;
aSeed = aSeed.Hash(propertyInfo.GetValue(aObject));
}
} else {
foreach (PropertyInfo propertyInfo in aObject.GetType()
.GetProperties(propertySelector)) {
if (propertyInfo.CanRead)
aSeed = aSeed.Hash(propertyInfo.GetValue(aObject));
}
}
return aSeed;
}
/// <summary>
/// NOTICE: this method is provided to contribute a <see cref="KeyValuePair{TKey,TValue}"/> to
/// the developing HashCode seed; by hashing the key and the value independently. HOWEVER,
/// this method has a different name since it will not be automatically invoked by
/// <see cref="Hash(int,object)"/>, <see cref="Hash(int,IEnumerable)"/>,
/// or <see cref="HashAllProperties"/> --- you MUST NOT mix this method with those unless
/// you are sure that no KeyValuePair instances will be passed to those methods; or otherwise
/// the generated hash code will not be consistent. This method itself ALSO will not invoke
/// this method on the Key or Value here if that itself is a KeyValuePair.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="keyValuePair">The value to contribute.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int HashKeyAndValue<TKey, TValue>(this int aSeed, KeyValuePair<TKey, TValue> keyValuePair)
=> aSeed.Hash(keyValuePair.Key)
.Hash(keyValuePair.Value);
/// <summary>
/// NOTICE: this method is provided to contribute a collection of <see cref="KeyValuePair{TKey,TValue}"/>
/// to the developing HashCode seed; by hashing the key and the value independently. HOWEVER,
/// this method has a different name since it will not be automatically invoked by
/// <see cref="Hash(int,object)"/>, <see cref="Hash(int,IEnumerable)"/>,
/// or <see cref="HashAllProperties"/> --- you MUST NOT mix this method with those unless
/// you are sure that no KeyValuePair instances will be passed to those methods; or otherwise
/// the generated hash code will not be consistent. This method itself ALSO will not invoke
/// this method on a Key or Value here if that itself is a KeyValuePair or an Enumerable of
/// KeyValuePair.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="keyValuePairs">The values to contribute.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int HashKeysAndValues<TKey, TValue>(
this int aSeed,
IEnumerable<KeyValuePair<TKey, TValue>> keyValuePairs)
{
if (keyValuePairs == null)
return aSeed.Hash(null);
foreach (KeyValuePair<TKey, TValue> keyValuePair in keyValuePairs) {
aSeed = aSeed.HashKeyAndValue(keyValuePair);
}
return aSeed;
}
}
}
Можно попробовать перенять подход из библиотек C++ Boost. Что-то вроде этого:
class HashUtil
{
public static int HashCombine(int seed, int other)
{
unchecked
{
return other + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
}
}
а потом:
class MyClass
{
private string _field1;
private int _field2;
private AnotherClass _field3;
private YetAnotherClass _field4;
public override int GetHashCode()
{
int result = HashUtil.HashCombine(_field1.GetHashCode(), _field2);
result = HashUtil.HashCombine(result, _field3.GetHashCode());
return HashUtil.HashCombine(result, _field4.GetHashCode());
}
}
Если вы хотите полифил HashCode
из netstandard2.1
public static class HashCode
{
public static int Combine(params object[] instances)
{
int hash = 17;
foreach (var i in instances)
{
hash = unchecked((hash * 31) + (i?.GetHashCode() ?? 0));
}
return hash;
}
}
Примечание: при использовании с struct
, он будет выделять память из-за бокса
Я хочу добавить свои последние открытия в эту ветку, к которой я так часто возвращался.
Моя текущая настройка визуальной студии / проекта обеспечивает функциональность для автоматического преобразования кортежей в структуры. Это создаст такую функцию GetHashCode:
public override int GetHashCode()
{
int hashCode = -2088324004;
hashCode = hashCode * -1521134295 + AuftragGesperrt.GetHashCode();
hashCode = hashCode * -1521134295 + Auftrag_gesperrt_von.GetHashCode();
hashCode = hashCode * -1521134295 + Auftrag_gesperrt_am.GetHashCode();
return hashCode;
}