Как построить сюжет оптимизировать результат

У меня есть Python Scipy оптимизировать с помощью функции F (X) = SIN (X), и я хочу построить результат. Как мне это сделать? Я уже пробовал с этим кодом. но я получаю эту ошибку: TypeError: only length-1 arrays can be converted to Python scalars

вот мой код:

'''Import Python math library'''
import math
import matplotlib.pyplot as plt
'''try and except ImportError handler will be printing message if you haven't install required python library'''
try:
    import scipy.optimize as opt
    import scipy
    from scipy.optimize import minimize
except ImportError:
    print "You must install Python scipy first before running this program"

try:
    import numpy as np
except ImportError:
    print "You must install Python numpy first before running this program"

'''function f(x) = sin(x)'''
def f(x):
    print x
    #return -x**(2)
    return math.sin(x)

'''
check here for fmin_l_bgfs_b docs : https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html#scipy.optimize.fmin_l_bfgs_b
and what params need to used.

or you can take a look at here : https://docs.scipy.org/doc/scipy/reference/optimize.html for other method and algorithm
'''
initial_guess = 1.0

minbound = -9
maxbound = 9

max_bounds_area = (minbound,maxbound)
max_x = opt.fmin_l_bfgs_b(lambda x: -f(x), initial_guess, bounds=[(max_bounds_area)],approx_grad=True)

# I want to plot the result. I try this but I get TypeError: only length-1 arrays can be converted to Python scalars
t = np.arange(minbound, maxbound, initial_guess)
s = f(t)
plt.plot(t, s)
plt.show()

1 ответ

Решение

math библиотека не может работать на numpy arrays, вы должны использовать функции, реализованные в numpy,

Должно быть изменение

return math.sin(x)

в

return np.sin(x) 
Другие вопросы по тегам