Как я могу передать последовательности длины 1 в tf.contrib.crf в TensorFlow?

tf.contrib.crf кажется, не поддерживает последовательности длиной 1.

Например, если я запускаю пример на https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/crf ( mirror) и заменяю num_words = 20 от num_words = 1:

import numpy as np
import tensorflow as tf

# Data settings.
num_examples = 10
num_words = 1
num_features = 100
num_tags = 5

# Random features.
x = np.random.rand(num_examples, num_words, num_features).astype(np.float32)

# Random tag indices representing the gold sequence.
y = np.random.randint(num_tags, size=[num_examples, num_words]).astype(np.int32)

# All sequences in this example have the same length, but they can be variable in a real model.
sequence_lengths = np.full(num_examples, num_words - 1, dtype=np.int32)

# Train and evaluate the model.
with tf.Graph().as_default():
  with tf.Session() as session:
    # Add the data to the TensorFlow graph.
    x_t = tf.constant(x)
    y_t = tf.constant(y)
    sequence_lengths_t = tf.constant(sequence_lengths)

    # Compute unary scores from a linear layer.
    weights = tf.get_variable("weights", [num_features, num_tags])
    matricized_x_t = tf.reshape(x_t, [-1, num_features])
    matricized_unary_scores = tf.matmul(matricized_x_t, weights)
    unary_scores = tf.reshape(matricized_unary_scores,
                              [num_examples, num_words, num_tags])

    # Compute the log-likelihood of the gold sequences and keep the transition
    # params for inference at test time.
    log_likelihood, transition_params = tf.contrib.crf.crf_log_likelihood(
        unary_scores, y_t, sequence_lengths_t)

    # Add a training op to tune the parameters.
    loss = tf.reduce_mean(-log_likelihood)
    train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)

    # Train for a fixed number of iterations.
    session.run(tf.global_variables_initializer())
    for i in range(1000):
      tf_unary_scores, tf_transition_params, _ = session.run(
          [unary_scores, transition_params, train_op])
      if i % 100 == 0:
        correct_labels = 0
        total_labels = 0
        for tf_unary_scores_, y_, sequence_length_ in zip(tf_unary_scores, y,
                                                          sequence_lengths):
          # Remove padding from the scores and tag sequence.
          tf_unary_scores_ = tf_unary_scores_[:sequence_length_]
          y_ = y_[:sequence_length_]

          # Compute the highest scoring sequence.
          viterbi_sequence, _ = tf.contrib.crf.viterbi_decode(
              tf_unary_scores_, tf_transition_params)

          # Evaluate word-level accuracy.
          correct_labels += np.sum(np.equal(viterbi_sequence, y_))
          total_labels += sequence_length_
        accuracy = 100.0 * correct_labels / float(total_labels)
        print("Accuracy: %.2f%%" % accuracy)

Я получаю сообщение об ошибке:

Traceback (most recent call last):
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\client\session.py", line 1022, in _do_call
    return fn(*args)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\client\session.py", line 1004, in _run_fn
    status, run_metadata)
  File "C:\Anaconda\envs\py35\lib\contextlib.py", line 66, in __exit__
    next(self.gen)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 469, in raise_exception_on_not_ok_status
    pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.UnimplementedError: TensorArray has size zero, but element shape <unknown> is not fully defined. Currently only static shapes are supported when packing zero-size TensorArrays.
     [[Node: gradients/rnn/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3_grad/TensorArrayGatherV3 = TensorArrayGatherV3[_class=["loc:@rnn/TensorArray_1"], dtype=DT_FLOAT, element_shape=<unknown>, _device="/job:localhost/replica:0/task:0/cpu:0"](gradients/rnn/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3_grad/TensorArrayGrad/TensorArrayGradV3, rnn/TensorArrayUnstack/range, gradients/rnn/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3_grad/TensorArrayGrad/gradient_flow)]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "C:\Users\Francky\Documents\GitHub\nlp\neurodeid\test\CRF_v2.py", line 47, in <module>
    [unary_scores, transition_params, train_op])
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\client\session.py", line 767, in run
    run_metadata_ptr)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\client\session.py", line 965, in _run
    feed_dict_string, options, run_metadata)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\client\session.py", line 1015, in _do_run
    target_list, options, run_metadata)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\client\session.py", line 1035, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.UnimplementedError: TensorArray has size zero, but element shape <unknown> is not fully defined. Currently only static shapes are supported when packing zero-size TensorArrays.
     [[Node: gradients/rnn/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3_grad/TensorArrayGatherV3 = TensorArrayGatherV3[_class=["loc:@rnn/TensorArray_1"], dtype=DT_FLOAT, element_shape=<unknown>, _device="/job:localhost/replica:0/task:0/cpu:0"](gradients/rnn/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3_grad/TensorArrayGrad/TensorArrayGradV3, rnn/TensorArrayUnstack/range, gradients/rnn/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3_grad/TensorArrayGrad/gradient_flow)]]

Caused by op 'gradients/rnn/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3_grad/TensorArrayGatherV3', defined at:
  File "C:\Users\Francky\Documents\GitHub\nlp\neurodeid\test\CRF_v2.py", line 41, in <module>
    train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\training\optimizer.py", line 288, in minimize
    grad_loss=grad_loss)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\training\optimizer.py", line 354, in compute_gradients
    colocate_gradients_with_ops=colocate_gradients_with_ops)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\ops\gradients_impl.py", line 482, in gradients
    in_grads = grad_fn(op, *out_grads)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\ops\tensor_array_grad.py", line 186, in _TensorArrayScatterGrad
    grad = g.gather(indices)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\ops\tensor_array_ops.py", line 348, in gather
    element_shape=element_shape)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\ops\gen_data_flow_ops.py", line 2226, in _tensor_array_gather_v3
    element_shape=element_shape, name=name)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 763, in apply_op
    op_def=op_def)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\framework\ops.py", line 2395, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\framework\ops.py", line 1264, in __init__
    self._traceback = _extract_stack()

...which was originally created as op 'rnn/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3', defined at:
  File "C:\Users\Francky\Documents\GitHub\nlp\neurodeid\test\CRF_v2.py", line 37, in <module>
    unary_scores, y_t, sequence_lengths_t)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\contrib\crf\python\ops\crf.py", line 156, in crf_log_likelihood
    log_norm = crf_log_norm(inputs, sequence_lengths, transition_params)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\contrib\crf\python\ops\crf.py", line 123, in crf_log_norm
    dtype=dtypes.float32)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\ops\rnn.py", line 545, in dynamic_rnn
    dtype=dtype)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\ops\rnn.py", line 663, in _dynamic_rnn_loop
    for ta, input_ in zip(input_ta, flat_input))
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\ops\rnn.py", line 663, in <genexpr>
    for ta, input_ in zip(input_ta, flat_input))
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\ops\tensor_array_ops.py", line 400, in unstack
    indices=math_ops.range(0, num_elements), value=value, name=name)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\ops\tensor_array_ops.py", line 428, in scatter
    name=name)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\ops\gen_data_flow_ops.py", line 2492, in _tensor_array_scatter_v3
    name=name)
  File "C:\Anaconda\envs\py35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 763, in apply_op
    op_def=op_def)

UnimplementedError (see above for traceback): TensorArray has size zero, but element shape <unknown> is not fully defined. Currently only static shapes are supported when packing zero-size TensorArrays.
     [[Node: gradients/rnn/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3_grad/TensorArrayGatherV3 = TensorArrayGatherV3[_class=["loc:@rnn/TensorArray_1"], dtype=DT_FLOAT, element_shape=<unknown>, _device="/job:localhost/replica:0/task:0/cpu:0"](gradients/rnn/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3_grad/TensorArrayGrad/TensorArrayGradV3, rnn/TensorArrayUnstack/range, gradients/rnn/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3_grad/TensorArrayGrad/gradient_flow)]]

num_words = 2 или же num_words = 5 Работа. Я вижу на https://github.com/tensorflow/tensorflow/blob/e121667dc609de978a223c56ee906368d2c4ceef/tensorflow/contrib/crf/python/ops/crf.py ( зеркало) уже убывает sequence_length по 1:

 # Compute the alpha values in the forward algorithm in order to get the
  # partition function.
  forward_cell = CrfForwardRnnCell(transition_params)
  _, alphas = rnn.dynamic_rnn(
      cell=forward_cell,
      inputs=rest_of_input,
      sequence_length=sequence_lengths - 1,
      initial_state=first_input,
      dtype=dtypes.float32)
  log_norm = math_ops.reduce_logsumexp(alphas, [1])
  return log_norm

Тем не менее, изменение sequence_lengths = np.full(num_examples, num_words - 1, dtype=np.int32) в sequence_lengths = np.full(num_examples, num_words, dtype=np.int32) не решает проблему, когда num_words = 1,

Как исправить эту проблему, чтобы уровень CRF поддерживал последовательности длиной 1?

Протестировано с TensorFlow 1.0.0 на Windows 7 SP1 x64 Ultimate и TensorFlow-GPU 1.0.0 на Ubuntu 14.04.4 LTS x64. Я создал проблему в репозитории TensorFlow, но она закрылась из-за неактивности: https://github.com/tensorflow/tensorflow/issues/7751 ( зеркало)

0 ответов

Другие вопросы по тегам