Умножьте верхние значения h на k для каждой строки в питоне
У меня есть датафрейм с некоторыми датами в виде строк и значений в столбцах. Чтобы иметь представление, df выглядит следующим образом:
c1 c2 c3 c4
12/12/2016 38 10 1 8
12/11/2016 44 12 17 46
12/10/2016 13 6 2 7
12/09/2016 9 16 13 26
Я пытаюсь найти способ итерации по каждой строке и умножить только верхние 2 значения раз k = 3. Результаты должны быть в новом столбце существующего df. Любое предложение или подсказка высоко ценится!
Спасибо!
3 ответа
Решение
nlargest
df.assign(newcol=df.apply(sorted, 1).iloc[:, -2:].sum(1) * 3)
c1 c2 c3 c4 newcol
12/12/2016 38 10 1 8 144
12/11/2016 44 12 17 46 270
12/10/2016 13 6 2 7 60
12/09/2016 9 16 13 26 126
partition
df.assign(newcol=np.partition(df, -2)[:, -2:].sum(1) * 3)
c1 c2 c3 c4 newcol
12/12/2016 38 10 1 8 144
12/11/2016 44 12 17 46 270
12/10/2016 13 6 2 7 60
12/09/2016 9 16 13 26 126
С помощью update
после groupby
+ nlargest
df.update(df.stack().groupby(level=0).nlargest(2).mul(k).reset_index(level=0,drop=True).unstack())
df
Out[1036]:
c1 c2 c3 c4
12/12/2016 114.0 30.0 1 8.0
12/11/2016 132.0 12.0 17 138.0
12/10/2016 39.0 6.0 2 21.0
12/09/2016 9.0 48.0 13 78.0
С df.where
+ df.rank
n = 2
k = 3
df.where(df.rank(1, method='dense') <= len(df.columns)-n, df*k)
c1 c2 c3 c4
12/12/2016 114 30 1 8
12/11/2016 132 12 17 138
12/10/2016 39 6 2 21
12/09/2016 9 48 13 78
Для адресации вашего обновления вы все равно можете использовать where + rank, хотя он кажется менее подходящим, чем для вышеупомянутых манипуляций.
df['new_col'] = df.where(df.rank(1, method='dense') >= len(df.columns)-n, df*0).sum(1)*k
c1 c2 c3 c4 new_col
12/12/2016 38 10 1 8 144
12/11/2016 44 12 17 46 270
12/10/2016 13 6 2 7 60
12/09/2016 9 16 13 26 126