RBM без улучшений с OpenACC на коде пока
Алгоритм RBM - это алгоритм с открытым исходным кодом. Исходный код доступен здесь: https://github.com/yusugomori/DeepLearning/tree/master/cpp
Я пытался добиться улучшения с помощью OpenACC различными способами, но последовательный код все еще лучше. Так что вы можете сказать мне, что нужно сделать (часть нуждается в улучшении), чтобы добиться высокого улучшения
#include <iostream>
#include <math.h>
#include "utils.h"
#include "RBM.h"
using namespace std;
using namespace utils;
RBM::RBM(int size, int n_v, int n_h, double **w, double *hb, double *vb) {
N = size;
n_visible = n_v;
n_hidden = n_h;
#pragma acc enter data copyin ( this)
//#pragma acc enter data copy ( W[0:n_hidden][0:n_visible] )
if(w == NULL) {
W = new double*[n_hidden];
for(int i=0; i<n_hidden; i++) W[i] = new double[n_visible];
double a = 1.0 / n_visible;
for(int i=0; i<n_hidden; i++) {
for(int j=0; j<n_visible; j++) {
W[i][j] = uniform(-a, a);
}
}
} else {
W = w;
}
if(hb == NULL) {
hbias = new double[n_hidden];
for(int i=0; i<n_hidden; i++) hbias[i] = 0;
} else {
hbias = hb;
}
if(vb == NULL) {
vbias = new double[n_visible];
for(int i=0; i<n_visible; i++) vbias[i] = 0;
} else {
vbias = vb;
}
}
RBM::~RBM() {
#pragma acc exit data delete ( W[0:n_hidden][0:n_visible],this )
for(int i=0; i<n_hidden; i++) delete[] W[i];
delete[] W;
delete[] hbias;
delete[] vbias;
}
void RBM::contrastive_divergence(int *input, double lr, int k) {
double *ph_mean = new double[n_hidden];
int *ph_sample = new int[n_hidden];
double *nv_means = new double[n_visible];
int *nv_samples = new int[n_visible];
double *nh_means = new double[n_hidden];
int *nh_samples = new int[n_hidden];
/* CD-k */
sample_h_given_v(input, ph_mean, ph_sample);
for(int step=0; step<k; step++) {
if(step == 0) {
gibbs_hvh(ph_sample, nv_means, nv_samples, nh_means, nh_samples);
} else {
gibbs_hvh(nh_samples, nv_means, nv_samples, nh_means, nh_samples);
}
}
for(int i=0; i<n_hidden; i++) {
for(int j=0; j<n_visible; j++) {
// W[i][j] += lr * (ph_sample[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
W[i][j] += lr * (ph_mean[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
}
hbias[i] += lr * (ph_sample[i] - nh_means[i]) / N;
}
for(int i=0; i<n_visible; i++) {
vbias[i] += lr * (input[i] - nv_samples[i]) / N;
}
delete[] ph_mean;
delete[] ph_sample;
delete[] nv_means;
delete[] nv_samples;
delete[] nh_means;
delete[] nh_samples;
}
void RBM::sample_h_given_v(int *v0_sample, double *mean, int *sample) {
for(int i=0; i<n_hidden; i++) {
mean[i] = propup(v0_sample, W[i], hbias[i]);
sample[i] = binomial(1, mean[i]);
}
}
void RBM::sample_v_given_h(int *h0_sample, double *mean, int *sample) {
for(int i=0; i<n_visible; i++) {
mean[i] = propdown(h0_sample, i, vbias[i]);
sample[i] = binomial(1, mean[i]);
}
}
double RBM::propup(int *v, double *w, double b) {
double pre_sigmoid_activation = 0.0;
#pragma acc enter data present ( this )
#pragma acc data copyin(v[0:n_visible],w[0:n_visible])
#pragma acc parallel
{
#pragma acc loop reduction(+:pre_sigmoid_activation)
for(int j=0; j<n_visible; j++) {
pre_sigmoid_activation += w[j] * v[j];
}
}
pre_sigmoid_activation += b;
return sigmoid(pre_sigmoid_activation);
}
double RBM::propdown(int *h, int i, double b) {
double pre_sigmoid_activation = 0.0;
#pragma acc enter data present ( this)//,W[0:n_hidden][0:n_visible] )
#pragma acc enter data copyin ( W[0:n_hidden][0:n_visible] )
#pragma acc data copyin(h[0:n_hidden])
#pragma acc parallel
{
#pragma acc loop reduction(+:pre_sigmoid_activation)
for(int j=0; j<n_hidden; j++) {
pre_sigmoid_activation += W[j][i] * h[j];
}
}
pre_sigmoid_activation += b;
return sigmoid(pre_sigmoid_activation);
}
void RBM::gibbs_hvh(int *h0_sample, double *nv_means, int *nv_samples, \
double *nh_means, int *nh_samples) {
sample_v_given_h(h0_sample, nv_means, nv_samples);
sample_h_given_v(nv_samples, nh_means, nh_samples);
}
void RBM::reconstruct(int *v, double *reconstructed_v) {
double *h = new double[n_hidden];
double pre_sigmoid_activation;
for(int i=0; i<n_hidden; i++) {
h[i] = propup(v, W[i], hbias[i]);
}
for(int i=0; i<n_visible; i++) {
pre_sigmoid_activation = 0.0;
for(int j=0; j<n_hidden; j++) {
pre_sigmoid_activation += W[j][i] * h[j];
}
pre_sigmoid_activation += vbias[i];
reconstructed_v[i] = sigmoid(pre_sigmoid_activation);
}
delete[] h;
//----------------------------------------------------The main
void test_rbm() {
srand(0);
double learning_rate = 0.1;
int training_epochs = 1000;
int k = 1;
int train_N = 6;
int test_N = 2;
int n_visible = 6;
int n_hidden = 3;
// training data
int train_X[6][6] = {
{1, 1, 1, 0, 0, 0},
{1, 0, 1, 0, 0, 0},
{1, 1, 1, 0, 0, 0},
{0, 0, 1, 1, 1, 0},
{0, 0, 1, 0, 1, 0},
{0, 0, 1, 1, 1, 0}
};
// construct RBM
RBM rbm(train_N, n_visible, n_hidden, NULL, NULL, NULL);
// train
for(int epoch=0; epoch<training_epochs; epoch++) {
for(int i=0; i<train_N; i++) {
rbm.contrastive_divergence(train_X[i], learning_rate, k);
}
}
// test data
int test_X[2][6] = {
{1, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 1, 0}
};
double reconstructed_X[2][6];
// test
for(int i=0; i<test_N; i++) {
rbm.reconstruct(test_X[i], reconstructed_X[i]);
for(int j=0; j<n_visible; j++) {
printf("%.5f ", reconstructed_X[i][j]);
}
cout << endl;
}
}
int main() {
test_rbm();
return 0;
2 ответа
У вас есть несколько ошибок, которые давали вам неправильные ответы. Я исправлю это ниже.
Что касается производительности, у вас недостаточно параллелизма для последовательного выполнения кода. Циклы, которые вы распараллеливаете, имеют очень мало вычислений, используют сокращения и очень малы. Чтобы увидеть ускорение на хосте, вам нужно будет использовать большие размеры (длины в несколько тысяч) и предпочтительно подтолкнуть уровень параллелизма к более высокой петле. Я попробовал это, но у биномиальной подпрограммы есть зависимость (вызов rand), которая предотвращает распараллеливание циклов в "sample_[vh]_given[_vh]".
#include <iostream>
#include <math.h>
#include "utils.h"
#include "RBM.h"
using namespace std;
using namespace utils;
RBM::RBM(int size, int n_v, int n_h, double **w, double *hb, double *vb) {
N = size;
n_visible = n_v;
n_hidden = n_h;
if(w == NULL) {
W = new double*[n_hidden];
for(int i=0; i<n_hidden; i++) W[i] = new double[n_visible];
double a = 1.0 / n_visible;
for(int i=0; i<n_hidden; i++) {
for(int j=0; j<n_visible; j++) {
W[i][j] = uniform(-a, a);
}
}
} else {
W = w;
}
if(hb == NULL) {
hbias = new double[n_hidden];
for(int i=0; i<n_hidden; i++) hbias[i] = 0;
} else {
hbias = hb;
}
if(vb == NULL) {
vbias = new double[n_visible];
for(int i=0; i<n_visible; i++) vbias[i] = 0;
} else {
vbias = vb;
}
#pragma acc enter data copyin (this,W[0:n_hidden][0:n_visible],hbias[0:n_hidden],vbias[0:n_visible])
}
RBM::~RBM() {
#pragma acc exit data delete ( hbias[0:n_hidden],vbias[0:n_visible],W[0:n_hidden][0:n_visible],this )
for(int i=0; i<n_hidden; i++) delete[] W[i];
delete[] W;
delete[] hbias;
delete[] vbias;
}
void RBM::contrastive_divergence(int *input, double lr, int k) {
double *ph_mean = new double[n_hidden];
int *ph_sample = new int[n_hidden];
double *nv_means = new double[n_visible];
int *nv_samples = new int[n_visible];
double *nh_means = new double[n_hidden];
int *nh_samples = new int[n_hidden];
/* CD-k */
sample_h_given_v(input, ph_mean, ph_sample);
for(int step=0; step<k; step++) {
if(step == 0) {
gibbs_hvh(ph_sample, nv_means, nv_samples, nh_means, nh_samples);
} else {
gibbs_hvh(nh_samples, nv_means, nv_samples, nh_means, nh_samples);
}
}
for(int i=0; i<n_hidden; i++) {
for(int j=0; j<n_visible; j++) {
// W[i][j] += lr * (ph_sample[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
W[i][j] += lr * (ph_mean[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
}
hbias[i] += lr * (ph_sample[i] - nh_means[i]) / N;
}
for(int i=0; i<n_visible; i++) {
vbias[i] += lr * (input[i] - nv_samples[i]) / N;
}
#pragma acc update device(vbias[0:n_visible],hbias[0:n_hidden],W[0:n_hidden][0:n_visible])
delete[] ph_mean;
delete[] ph_sample;
delete[] nv_means;
delete[] nv_samples;
delete[] nh_means;
delete[] nh_samples;
}
void RBM::sample_h_given_v(int *v0_sample, double *mean, int *sample) {
#pragma acc data copyin(v0_sample[0:n_visible])
{
for(int i=0; i<n_hidden; i++) {
mean[i] = propup(v0_sample, W[i], hbias[i]);
sample[i] = binomial(1, mean[i]);
}
}
}
void RBM::sample_v_given_h(int *h0_sample, double *mean, int *sample) {
#pragma acc data copyin(h0_sample[0:n_visible])
{
for(int i=0; i<n_visible; i++) {
mean[i] = propdown(h0_sample, i, vbias[i]);
sample[i] = binomial(1, mean[i]);
}
}
}
double RBM::propup(int *v, double *w, double b) {
double pre_sigmoid_activation = 0.0;
#pragma acc parallel present(w,v)
{
#pragma acc loop reduction(+:pre_sigmoid_activation)
for(int j=0; j<n_visible; j++) {
pre_sigmoid_activation += w[j] * v[j];
}
}
pre_sigmoid_activation += b;
return sigmoid(pre_sigmoid_activation);
}
double RBM::propdown(int *h, int i, double b) {
double pre_sigmoid_activation = 0.0;
#pragma acc parallel present(W,h)
{
#pragma acc loop reduction(+:pre_sigmoid_activation)
for(int j=0; j<n_hidden; j++) {
pre_sigmoid_activation += W[j][i] * h[j];
}
}
pre_sigmoid_activation += b;
return sigmoid(pre_sigmoid_activation);
}
void RBM::gibbs_hvh(int *h0_sample, double *nv_means, int *nv_samples, \
double *nh_means, int *nh_samples) {
sample_v_given_h(h0_sample, nv_means, nv_samples);
sample_h_given_v(nv_samples, nh_means, nh_samples);
}
void RBM::reconstruct(int *v, double *reconstructed_v) {
double *h = new double[n_hidden];
double pre_sigmoid_activation;
#pragma acc data copyin(v[0:n_visible])
{
for(int i=0; i<n_hidden; i++) {
h[i] = propup(v, W[i], hbias[i]);
}
for(int i=0; i<n_visible; i++) {
pre_sigmoid_activation = 0.0;
for(int j=0; j<n_hidden; j++) {
pre_sigmoid_activation += W[j][i] * h[j];
}
pre_sigmoid_activation += vbias[i];
reconstructed_v[i] = sigmoid(pre_sigmoid_activation);
}
}
delete[] h;
}
//----------------------------------------------------The main
void test_rbm() {
srand(0);
double learning_rate = 0.1;
int training_epochs = 1000;
int k = 1;
int train_N = 6;
int test_N = 2;
int n_visible = 6;
int n_hidden = 3;
// training data
int train_X[6][6] = {
{1, 1, 1, 0, 0, 0},
{1, 0, 1, 0, 0, 0},
{1, 1, 1, 0, 0, 0},
{0, 0, 1, 1, 1, 0},
{0, 0, 1, 0, 1, 0},
{0, 0, 1, 1, 1, 0}
};
// construct RBM
RBM rbm(train_N, n_visible, n_hidden, NULL, NULL, NULL);
// train
for(int epoch=0; epoch<training_epochs; epoch++) {
for(int i=0; i<train_N; i++) {
rbm.contrastive_divergence(train_X[i], learning_rate, k);
}
}
// test data
int test_X[2][6] = {
{1, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 1, 0}
};
double reconstructed_X[2][6];
// test
for(int i=0; i<test_N; i++) {
rbm.reconstruct(test_X[i], reconstructed_X[i]);
for(int j=0; j<n_visible; j++) {
printf("%20.15f ", reconstructed_X[i][j]);
}
cout << endl;
}
}
int main() {
test_rbm();
return 0;
}
Вы можете поместить ограниченное биномиальное распределение (в виде массива int) внутри функции ядра. Тем самым исключается необходимость в rand().