Spark: GraphX ​​не может найти связанные компоненты в графах с несколькими ребрами и длинными путями

Я новичок в Spark и GraphX ​​и провел несколько экспериментов с его алгоритмом, чтобы найти связанные компоненты. Я заметил, что структура графика, похоже, сильно влияет на производительность.

Он был в состоянии вычислить графы с миллионами вершин и ребер, но для определенной группы графов алгоритм не завершился вовремя, но в конечном итоге потерпел неудачу с OutOfMemoryError: GC overhead limit exceeded,

Алгоритм, похоже, имеет проблемы с графами, которые содержат длинные пути. Например, для этого графика { (i,i+1) | i <- {1..200} } вычисления не удаются. Однако, когда я добавил транзитивные ребра, вычисление сразу закончилось:

{ (i,j) | i <- {1..200}, j <- {i+1,200} }

Также графики, как это не было проблемой:

{ (i,1) | i <- {1..200} }

Вот минимальный пример для воспроизведения проблемы:

import org.apache.spark._
import org.apache.spark.graphx._
import org.apache.spark.graphx.lib._
import org.apache.spark.storage.StorageLevel

import scala.collection.mutable

object Matching extends Logging {

  def main(args: Array[String]): Unit = {
    val fname = "input.graph"
    val optionsList = args.drop(1).map { arg =>
      arg.dropWhile(_ == '-').split('=') match {
        case Array(opt, v) => opt -> v
        case _ => throw new IllegalArgumentException("Invalid argument: " + arg)
      }
    }
    val options = mutable.Map(optionsList: _*)

    val conf = new SparkConf()
    GraphXUtils.registerKryoClasses(conf)

    val partitionStrategy: Option[PartitionStrategy] = options.remove("partStrategy")
      .map(PartitionStrategy.fromString(_))
    val edgeStorageLevel = options.remove("edgeStorageLevel")
      .map(StorageLevel.fromString(_)).getOrElse(StorageLevel.MEMORY_ONLY)
    val vertexStorageLevel = options.remove("vertexStorageLevel")
      .map(StorageLevel.fromString(_)).getOrElse(StorageLevel.MEMORY_ONLY)

    val sc = new SparkContext(conf.setAppName("ConnectedComponents(" + fname + ")"))
    val unpartitionedGraph = GraphLoader.edgeListFile(sc, fname,
      edgeStorageLevel = edgeStorageLevel,
      vertexStorageLevel = vertexStorageLevel).cache()
    log.info("Loading graph...")
    val graph = partitionStrategy.foldLeft(unpartitionedGraph)(_.partitionBy(_))
    log.info("Loading graph...done")

    log.info("Computing connected components...")
    val cc = ConnectedComponents.run(graph)
    log.info("Computed connected components...done")

    sc.stop()
  }
}

input.graph Файл может выглядеть вот так (10 узлов, 9 ребер, соединяющих их):

1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10

Когда это терпит неудачу, это висит в ConnectedComponents.run(graph), Сообщение об ошибке:

Exception in thread "dag-scheduler-event-loop" java.lang.OutOfMemoryError: GC overhead limit exceeded
    at java.util.regex.Pattern.compile(Pattern.java:1054)
    at java.lang.String.replace(String.java:2239)
    at org.apache.spark.util.Utils$.getFormattedClassName(Utils.scala:1632)
    at org.apache.spark.storage.RDDInfo$$anonfun$1.apply(RDDInfo.scala:58)
    at org.apache.spark.storage.RDDInfo$$anonfun$1.apply(RDDInfo.scala:58)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.storage.RDDInfo$.fromRdd(RDDInfo.scala:58)
    at org.apache.spark.scheduler.StageInfo$$anonfun$1.apply(StageInfo.scala:80)
    at org.apache.spark.scheduler.StageInfo$$anonfun$1.apply(StageInfo.scala:80)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:245)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:245)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at scala.collection.TraversableLike$class.map(TraversableLike.scala:245)
    at scala.collection.AbstractTraversable.map(Traversable.scala:104)
    at org.apache.spark.scheduler.StageInfo$.fromStage(StageInfo.scala:80)
    at org.apache.spark.scheduler.Stage.<init>(Stage.scala:99)
    at org.apache.spark.scheduler.ShuffleMapStage.<init>(ShuffleMapStage.scala:44)
    at org.apache.spark.scheduler.DAGScheduler.newShuffleMapStage(DAGScheduler.scala:317)
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$newOrUsedShuffleStage(DAGScheduler.scala:352)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$getShuffleMapStage$1.apply(DAGScheduler.scala:286)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$getShuffleMapStage$1.apply(DAGScheduler.scala:285)
    at scala.collection.Iterator$class.foreach(Iterator.scala:742)
    at scala.collection.AbstractIterator.foreach(Iterator.scala:1194)
    at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
    at scala.collection.mutable.Stack.foreach(Stack.scala:170)
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$getShuffleMapStage(DAGScheduler.scala:285)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$visit$1$1.apply(DAGScheduler.scala:389)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$visit$1$1.apply(DAGScheduler.scala:386)
    at scala.collection.immutable.List.foreach(List.scala:381)
    at org.apache.spark.scheduler.DAGScheduler.visit$1(DAGScheduler.scala:386)
    at org.apache.spark.scheduler.DAGScheduler.getParentStages(DAGScheduler.scala:398)

Я запускаю локальный узел Spark и запускаю JVM со следующими параметрами:

-Dspark.master=local -Dspark.local.dir=/home/phil/tmp/spark-tmp -Xms8g -Xmx8g

Можете ли вы помочь мне понять, почему у него есть проблема с этим игрушечным графом (201 узел и 200 ребер), но с другой стороны, можно решить реалистичный граф с несколькими миллионами ребер примерно за 80 секунд? (В обоих примерах я использую одинаковые настройки и настройки.)

ОБНОВИТЬ:

Также могут быть воспроизведены в искровой оболочке:

import org.apache.spark.graphx._
import org.apache.spark.graphx.lib._

val graph = GraphLoader.edgeListFile(sc, "input.graph").cache()
ConnectedComponents.run(graph)

Я создал отчет об ошибке: SPARK-15042

1 ответ

Решение

Согласно SPARK-15042, проблема все еще существует в 2.1.0-снимке.

Прогресс в исправлении ошибки можно увидеть в SPARK-5484.

Другие вопросы по тегам