Python против C++ OpenCV matchTemplate
У меня странная проблема с OpenCV. Я делал сопоставление шаблонов с OpenCV как на Python, так и на C++, однако, хотя Python использует методы C++ под капотом, я получаю совершенно разные результаты. Метод Python дает мне действительно точное место, C++ просто даже не близко. Что является причиной этого? Это мой код C++ или что-то еще??
Я использую Python 2.7.11, Apple LLVM версии 7.3.0 (clang-703.0.29) и OpenCV3.0.
Мой код Python:
def toGray(img):
_, _, channels = img.shape
if channels == 3:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
else:
gray = img
return gray
def template_match(img, template):
w, h = template.shape[::-1]
res = cv2.matchTemplate(img,template,cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
cv2.rectangle(img,top_left, bottom_right, 255, 2)
plt.subplot(121),plt.imshow(res,cmap = 'gray')
plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img,cmap = 'gray')
plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
plt.suptitle("TM_CCOEFF_NORMED")
plt.show()
if __name__ == "__main__":
img_name = sys.argv[1]
img_name2 = sys.argv[2]
img_rgb = cv2.imread(img_name)
img_rgb2 = cv2.imread(img_name2)
gimg1 = toGray(img_rgb)
gimg2 = toGray(img_rgb2)
template_match(gimg1, gimg2)
Мой код C++ (он точно такой же с документацией OpenCV):
Mat img; Mat templ; Mat result;
char* image_window = "Source Image";
char* result_window = "Result window";
int match_method;
int max_Trackbar = 5;
/// Function Headers
void MatchingMethod( int, void* );
/** @function main */
int main( int argc, char** argv )
{
/// Load image and template
img = imread( argv[1], 1 );
templ = imread( argv[2], 1 );
/// Create windows
namedWindow( image_window, CV_WINDOW_AUTOSIZE );
namedWindow( result_window, CV_WINDOW_AUTOSIZE );
/// Create Trackbar
char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod );
MatchingMethod( 0, 0 );
waitKey(0);
return 0;
}
/**
* @function MatchingMethod
* @brief Trackbar callback
*/
void MatchingMethod( int, void* )
{
/// Source image to display
Mat img_display;
img.copyTo( img_display );
/// Create the result matrix
int result_cols = img.cols - templ.cols + 1;
int result_rows = img.rows - templ.rows + 1;
result.create( result_rows, result_cols, CV_32FC1 );
/// Do the Matching and Normalize
matchTemplate( img, templ, result, match_method );
normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() );
/// Localizing the best match with minMaxLoc
double minVal; double maxVal; Point minLoc; Point maxLoc;
Point matchLoc;
minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() );
/// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
if( match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED )
{ matchLoc = minLoc; }
else
{ matchLoc = maxLoc; }
/// Show me what you got
rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
imshow( image_window, img_display );
imshow( result_window, result );
cv::imwrite("rec.jpg", img_display);
return;
}
1 ответ
Рассматривая две реализации, наиболее очевидное различие между ними заключается в цветовом формате используемых изображений.
В версии Python вы загружаете изображения "как есть". Поскольку ваши входные изображения имеют формат RGB (как и предполагают имена переменных), вы будете выполнять сопоставление шаблонов на цветных изображениях.
img_rgb = cv2.imread(img_name)
img_rgb2 = cv2.imread(img_name2)
Однако в C++ вы загружаете изображения в градациях серого, так как вы передаете 1
как второй параметр.
img = imread( argv[1], 1 );
templ = imread( argv[2], 1 );
В соответствии с cv::matchTemplate
документация:
В случае цветного изображения суммирование шаблона в числителе и каждая сумма в знаменателе выполняется по всем каналам, и для каждого канала используются отдельные средние значения. То есть функция может принимать цветной шаблон и цветное изображение. В результате все еще будет одноканальное изображение, которое легче анализировать.
Это предполагает, что при применении его к 3-канальному изображению вполне возможно получить другие результаты, чем при применении к одноканальной версии того же изображения.