Дизайн машины Тьюринга 0 и 1
f1(1^n01^m) = 1^|m−n|
спроектировать машину Тьюринга, которая вычисляет функцию (диаграмма перехода)
как отслеживать 0 в середине? Я пытался сделать это, но не могу понять это
1 ответ
Я предполагаю, что вы хотите, чтобы ленточный алфавит состоял только из 0, 1 и - (пусто). Наша стратегия здесь является плодотворной при работе с одноленточными машинами Тьюринга: мы будем подпрыгивать назад и вперед около 0 в середине, вычеркивая 1 по мере их нахождения. Мы продолжим, пока не закончится 1
и достичь пустого места. В этот момент на ленте остается только 1^|mn| а также n+m+1-|mn| нули. Наконец, мы копируем наш результат в начало ленты (если это не там, где он уже есть, т.е. если m > n) и удаляем нули.
Q s s' D Q'
// read past 1^n
q0 1 1 R q0
// read through zeroes
q0 0 0 R q1
q1 0 0 R q1
// mark out the first 1 remaining in 1^m
q1 1 0 L q2
// read through zeros backwards
q2 0 0 L q2
// mark out the last 1 remaining in 1^n
q2 1 0 R q1
// we were reading through zeroes forward
// and didn't find another 1. n >= m and
// we have deleted the same number from
// the first and last parts so just delete
// zeroes
q1 - - L q3
q3 0 - L q3
q3 1 1 L halt_accept
// we were reading through zeroes backwards
// and didn't find another 1. n < m and we
// accidentally deleted one too many symbols
// from the 1^m part. write it back and start
// copying the 1s from after the 0s back to
// the beginning of the tape. then, clear zeroes.
q2 - - R q4
q4 0 1 R q5
q5 0 0 R q5
q5 1 0 L q6
q6 0 0 L q6
q6 1 1 R q4
q5 - - L q7
q7 0 - L q7
q7 1 1 L halt_accept
Естественно, ни один пример ТМ не был бы полным без примера его выполнения.
-111110111- => -111110111- => -111110111-
^ ^ ^
q0 q0 q0
=> -111110111- => -111110111- => -111110111-
^ ^ ^
q0 q0 q0
=> -111110111- => -111110011- => -111110011-
^ ^ ^
q1 q2 q2
=> -111100011- => -111100011- => -111100011-
^ ^ ^
q1 q1 q1
=> -111100001- => -111100001- => -111100001-
^ ^ ^
q2 q2 q2
=> -111100001- => -111000001- => -111000001-
^ ^ ^
q1 q1 q1
=> -111000001- => -111000001- => -111000001-
^ ^ ^
q1 q1 q1
=> -111000000- => -111000000- => -111000000-
^ ^ ^
q2 q2 q2
=> -111000000- => -111000000- => -111000000-
^ ^ ^
q2 q2 q2
=> -110000000- => -110000000- => -110000000-
^ ^ ^
q1 q1 q1
=> -110000000- => -110000000- => -110000000-
^ ^ ^
q1 q1 q1
=> -110000000- => -110000000- => -11000000--
^ ^ ^
q1 q3 q3
=> -1100000--- => -110000---- => -11000-----
^ ^ ^
q1 q3 q3
=> -1100------ => -110------- => -11--------
^ ^ ^
q1 q3 q3
=> -11--------
^
halt_accept