Sympy терпит неудачу, wxMaxima нет
Я пытаюсь решить следующий неопределенный интеграл как с wxMaxima, так и sympy:
integrate(r^2*sqrt(R^2-r^2),r)
В Maxima я получил ответ, но не в симпати. Я не понимаю почему. Я большой пользователь Python и буду любить заниматься символической математикой в Python, но так как sympy не решил эту проблему, я все еще застрял с Maxima.
Я что-то не так делаю или Максиам лучше? (Я тоже решил то же самое в Mathematica)
Я получил следующий ответ в wxMaxima:
f:r^2*sqrt(R^2-r^2);
g:integrate(f,r);
дает этот ответ:
g:(R^4*asin(r/abs(R)))/8-(r*(R^2-r^2)^(3/2))/4+(r*R^2*sqrt(R^2-r^2))/8
Это выглядит ужасно, но забудьте об этом. Дело в том, что sympy не может решить этот интеграл. Попытка решить то же самое с помощью этого кода:
import sympy as sy
import math
R,r = sy.symbols('R r')
g = sy.integrate(r**2*(R**2-r**2)**0.5,r)
print g
Выдает это сообщение об ошибке:
Traceback (most recent call last):
File "E:\UD\Software\BendStiffener\calculate-moment\moment-calculation-equations\sympy-test.py", line 4, in <module>
g = sy.integrate(r**2*(R**2-r**2)**0.5,r)
File "C:\Python27\lib\site-packages\sympy\utilities\decorator.py", line 35, in threaded_func
return func(expr, *args, **kwargs)
File "C:\Python27\lib\site-packages\sympy\integrals\integrals.py", line 1232, in integrate
risch=risch, manual=manual)
File "C:\Python27\lib\site-packages\sympy\integrals\integrals.py", line 487, in doit
conds=conds)
File "C:\Python27\lib\site-packages\sympy\integrals\integrals.py", line 876, in _eval_integral
h = meijerint_indefinite(g, x)
File "C:\Python27\lib\site-packages\sympy\integrals\meijerint.py", line 1596, in meijerint_indefinite
res = _meijerint_indefinite_1(f.subs(x, x + a), x)
File "C:\Python27\lib\site-packages\sympy\integrals\meijerint.py", line 1646, in _meijerint_indefinite_1
r = hyperexpand(r.subs(t, a*x**b))
File "C:\Python27\lib\site-packages\sympy\simplify\hyperexpand.py", line 2482, in hyperexpand
return f.replace(hyper, do_replace).replace(meijerg, do_meijer)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 1351, in replace
rv = bottom_up(self, rec_replace, atoms=True)
File "C:\Python27\lib\site-packages\sympy\simplify\simplify.py", line 4082, in bottom_up
rv = F(rv)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 1336, in rec_replace
new = _value(expr, result)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 1280, in <lambda>
_value = lambda expr, result: value(*expr.args)
File "C:\Python27\lib\site-packages\sympy\simplify\hyperexpand.py", line 2479, in do_meijer
allow_hyper, rewrite=rewrite)
File "C:\Python27\lib\site-packages\sympy\simplify\hyperexpand.py", line 2375, in _meijergexpand
t, 1/z0)
File "C:\Python27\lib\site-packages\sympy\simplify\hyperexpand.py", line 2335, in do_slater
resid = residue(integrand, s, b_ + r)
File "C:\Python27\lib\site-packages\sympy\series\residues.py", line 57, in residue
s = expr.series(x, n=0)
File "C:\Python27\lib\site-packages\sympy\core\expr.py", line 2435, in series
rv = self.subs(x, xpos).series(xpos, x0, n, dir, logx=logx)
File "C:\Python27\lib\site-packages\sympy\core\expr.py", line 2442, in series
s1 = self._eval_nseries(x, n=n, logx=logx)
File "C:\Python27\lib\site-packages\sympy\core\mul.py", line 1446, in _eval_nseries
terms = [t.nseries(x, n=n, logx=logx) for t in self.args]
File "C:\Python27\lib\site-packages\sympy\core\expr.py", line 2639, in nseries
return self._eval_nseries(x, n=n, logx=logx)
File "C:\Python27\lib\site-packages\sympy\functions\special\gamma_functions.py", line 168, in _eval_nseries
return super(gamma, self)._eval_nseries(x, n, logx)
File "C:\Python27\lib\site-packages\sympy\core\function.py", line 598, in _eval_nseries
term = e.subs(x, S.Zero)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 892, in subs
rv = rv._subs(old, new, **kwargs)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 1006, in _subs
rv = fallback(self, old, new)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 983, in fallback
rv = self.func(*args)
File "C:\Python27\lib\site-packages\sympy\core\function.py", line 382, in __new__
return result.evalf(mlib.libmpf.prec_to_dps(pr))
File "C:\Python27\lib\site-packages\sympy\core\evalf.py", line 1317, in evalf
result = evalf(self, prec + 4, options)
File "C:\Python27\lib\site-packages\sympy\core\evalf.py", line 1217, in evalf
re, im = x._eval_evalf(prec).as_real_imag()
File "C:\Python27\lib\site-packages\sympy\core\function.py", line 486, in _eval_evalf
v = func(*args)
File "C:\Python27\lib\site-packages\sympy\mpmath\ctx_mp_python.py", line 993, in f
return ctx.make_mpf(mpf_f(x._mpf_, prec, rounding))
File "C:\Python27\lib\site-packages\sympy\mpmath\libmp\gammazeta.py", line 1947, in mpf_gamma
raise ValueError("gamma function pole")
ValueError: gamma function pole
2 ответа
Вы получаете решение, когда немного переписываете свое уравнение:
import sympy as sy
import math
R, r = sy.symbols('R r')
g = sy.integrate(r**2 * sy.sqrt((R**2 - r**2)), r)
print g.simplify()
Так что вместо использования expr**0.5
, Я использую sy.sqrt(expr)
, Что дает
Piecewise((I*R*(-R**3*acosh(r/R) - R**2*r*sqrt((-R**2 + r**2)/R**2) + 2*r**3*sqrt((-R**2 + r**2)/R**2))/8, Abs(r**2/R**2) > 1), (R*(R**3*asin(r/R) - R**2*r*sqrt(1 - r**2/R**2) + 2*r**3*sqrt(1 - r**2/R**2))/8, True))
Трудно сказать, совпадает ли это с результатами Maxima, поскольку sympy дает вам решение в двух частях, которые зависят от того, является ли аргумент в sqrt
больше или меньше 0. Вы можете попытаться использовать фактические границы и проверить, получаете ли вы те же результаты для решения Maxima, и вторая часть результата, которую вы получите от sympy.
Вы можете получить доступ ко второй части решения следующим образом:
g.args[1][0]
который дает вам:
R**4*asin(r/R)/8 - R**3*r/(8*sqrt(1 - r**2/R**2)) + 3*R*r**3/(8*sqrt(1 - r**2/R**2)) - r**5/(4*R*sqrt(1 - r**2/R**2))
Вы также можете получить упрощенную версию, выполнив:
g.args[1][0].simplify()
который дает вам:
R*(R**3*asin(r/R) - R**2*r*sqrt(1 - r**2/R**2) + 2*r**3*sqrt(1 - r**2/R**2))/8
Это выглядит сейчас очень похоже на результат, полученный Maxima.
В общем, SymPy будет работать лучше с рациональными числами, чем с числами с плавающей запятой, особенно когда эти числа являются степенями.
Это потому, что "хорошие" решения в замкнутой форме часто существуют только для точных степеней. Рассмотрим, например, разницу между этим
In [39]: integrate(r**2*sqrt(R**2-r**2), r)
Out[39]:
⎧ 4 ⎛r⎞
⎪ ⅈ⋅R ⋅acosh⎜─⎟ 3 3 5 │ 2│
⎪ ⎝R⎠ ⅈ⋅R ⋅r 3⋅ⅈ⋅R⋅r ⅈ⋅r │r │
⎪- ───────────── + ───────────────── - ───────────────── + ─────────────────── for │──│ > 1
⎪ 8 _________ _________ _________ │ 2│
⎪ ╱ 2 ╱ 2 ╱ 2 │R │
⎪ ╱ r ╱ r ╱ r
⎪ 8⋅ ╱ -1 + ── 8⋅ ╱ -1 + ── 4⋅R⋅ ╱ -1 + ──
⎪ ╱ 2 ╱ 2 ╱ 2
⎪ ╲╱ R ╲╱ R ╲╱ R
⎨
⎪ 4 ⎛r⎞
⎪ R ⋅asin⎜─⎟ 3 3 5
⎪ ⎝R⎠ R ⋅r 3⋅R⋅r r
⎪ ────────── - ──────────────── + ──────────────── - ────────────────── otherwise
⎪ 8 ________ ________ ________
⎪ ╱ 2 ╱ 2 ╱ 2
⎪ ╱ r ╱ r ╱ r
⎪ 8⋅ ╱ 1 - ── 8⋅ ╱ 1 - ── 4⋅R⋅ ╱ 1 - ──
⎪ ╱ 2 ╱ 2 ╱ 2
⎩ ╲╱ R ╲╱ R ╲╱ R
и это
In [40]: integrate(r**2*(R**2-r**2)**0.5001, r)
Out[40]:
⎛ │ 2 2⋅ⅈ⋅π⎞
1.0002 3 ┌─ ⎜-0.5001, 3/2 │ r ⋅ℯ ⎟
0.333333333333333⋅R ⋅r ⋅ ├─ ⎜ │ ─────────⎟
2╵ 1 ⎜ 5/2 │ 2 ⎟
⎝ │ R ⎠
Мощность почти 0,5, но ответ требует использования специальной функции для представления. SymPy может не заметить, что 0.5 должно быть 1/2 (и неточность чисел с плавающей запятой в этом не помогает).
С учетом сказанного, я считаю, что это ошибка SymPy, тем более что она может вычислять integrate(r**2*(R**2-r**2)**0.5001, r)
,