Сводка с именами меток с помощью dplyr

Я импортировал файл.sav с Haven, но я застрял в том, что не могу понять, как печатать названия этикеток на месте или с помощью кодировок этикеток. Ярлыки: 1 = безработный, 2 = смотрящий и т. Д.

Employment <- select(well_being_df, EmploymentStatus, Gender) %>% <group_by(EmploymentStatus) %>% summarise_all(funs(mean, n = n(), sd,min(.,is.na = TRUE), max(.,is.na = TRUE)))


# A tibble: 5 x 6
  EmploymentStatus  mean     n    sd   min   max
  <dbl+lbl>        <dbl> <int> <dbl> <dbl> <dbl>
 1 1                 1.67    12 0.492     1     2
 2 2                 1.17     6 0.408     1     2
 3 3                 1.8     85 0.431     1     3
 4 4                 1.5     62 0.504     1     2
 5 5                 1.5      4 0.577     1     2

В идеале:

 # A tibble: 5 x 6
EmploymentStatus  mean     n    sd   min   max
<dbl+lbl>        <dbl> <int> <dbl> <dbl> <dbl>
1 1  Unemployed     1.67    12 0.492     1     2
2 2  Looking        1.17     6 0.408     1     2
3 3  Etc            1.8     85 0.431     1     3
4 4                 1.5     62 0.504     1     2
5 5                 1.5      4 0.577     1     2

dput(head(well_being_df, 10))
structure(list(Age = c(22, 20, 23, 20, 25, 18, 24, 21, 21, 30.7344197070233
), Gender = structure(c(2, 2, 1, 2, 1, 2, 2, 2, 2, 1), labels = c(Male = 1, 
Female = 2, Transgender = 3), class = "labelled"), EmploymentStatus = structure(c(3, 
1, 4, 3, 3, 3, 3, 4, 3, 4), labels = c(`Unemployed but not looking` = 1, 
`Unemployed and looking` = 2, `Part-time` = 3, `Full-time` = 4, 
Retired = 5), class = "labelled"), Cognition1 = structure(c(6, 
3, 6, 5, 9, 6, 4, 4, 7, 5), labels = c(`Provides nothing that you want` = 0, 
`Provides half of what you want` = 5, `Provides all that you want` = 10
), class = "labelled"), Cognition2 = structure(c(7, 3, 8, 
5, 8, 5, 5, 7, 7, 3), labels = c(`Far below average` = 0, 
`About Average` = 5, `Far above average` = 10), class = "labelled"), 
Cognition3 = structure(c(6, 5, 4, 5, 6, 5, 5, 5, 5, 5), labels = c(`Far less than you deserve` = 0, 
`About what you deserve` = 5, `Far more than you deserve` = 10
), class = "labelled"), Cognition4 = structure(c(7, 3, 6, 
2, 8, 3, 3, 5, 6, 2), labels = c(`Far less than you need` = 0, 
`About what you need` = 5, `Far more than you need` = 10), class = "labelled"), 
Cognition5 = structure(c(10, 9, 6, 3, 7, 2, 2, 0, 4, 0), labels = c(`Far less than expected` = 0, 
`About as expected` = 5, `Far more than expected` = 10), class = "labelled"), 
Cognition6 = structure(c(8, 6, 0, 3, 3, 8, 9, 10, 5, 10), labels = c(`Far more than it will in the future` = 0, 
`About what you expect in the future` = 5, `Far less than what the future will offer` = 10
), class = "labelled"), Cognition7 = structure(c(9, 7, 10, 
5, 6, 2, 3, 0, 8, 3), labels = c(`Far below previous best` = 0, 
`Equals previous best` = 5, `Far above previous best` = 10
), class = "labelled")), row.names = c(NA, -10L), class = c("tbl_df", 
"tbl", "data.frame"))

1 ответ

Решение
Employment <- select(well_being_df, EmploymentStatus, Gender) %>% 
    mutate(EmploymentStatus = labelled::to_factor(EmploymentStatus)) %>% # use labelled package 
    group_by(EmploymentStatus) %>% 
    summarise_all(funs(mean, n = n(), sd,min(.,is.na = TRUE), max(.,is.na = TRUE)))
Другие вопросы по тегам