Python OpenCV - обнаружение глаз и сохранение
Я новичок в OpenCV. Мне нужно обнаружить глаза с помощью opencv и сохранить их в папке для дальнейшей классификации. Я написал следующий скрипт для того же:
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
cap = cv2.VideoCapture(0)
while True:
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
count=1
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
crop_img = roi_color[ey: ey + eh, ex: ex + ew]
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
s="{0}.jpg"
s1='/home/kushal/Pictures/Webcam/'+s.format(count)
count=count+1
cv2.imwrite(s1,crop_img)
cv2.imshow('img',img)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
cap.release()
cv2.destroyAllWindows()
Я хочу сохранить как можно больше изображений глаз. Но я получаю только 3-4 сохраненных изображения глаз. Можно ли получить один кадр или одно изображение в секунду? Какие изменения должны быть сделаны в этом коде?
2 ответа
Переехать count=1
вне while-loop
,
count = 1
while True:
pass
#your code
И отступ cv2.imshow
это не так правильно.
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
cap = cv2.VideoCapture(0)
count=1
while True:
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.2, 5)
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
print(count)
crop_img = roi_color[ey: ey + eh, ex: ex + ew]
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
s1='tmp/{}.jpg'.format(count)
count=count+1
cv2.imwrite(s1,crop_img)
cv2.imshow('img',img)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
cap.release()
cv2.destroyAllWindows()
Со ссылкой на предыдущий ответ вы также можете поэкспериментировать с изменением коэффициента масштабирования скользящего окна каскада Хаара.
К этому времени вы уже могли предположить, что в вашей галерее есть ложные срабатывания, то есть неглазые изображения, обнаруженные каскадом Хаара как глаза. Поэтому я бы порекомендовал попробовать D-lib, так как он может дать более точные результаты. Вы можете попытаться обрезать область интереса из 68 точек лица, предоставленных библиотекой d-lib. Для вашей справки.