cublassgemm для основной строки матрицы
Я действительно пытался реализовать функцию в C для умножения на матрицу старших строк в cublas. Я не знаю, где я ошибаюсь. В функции ниже A, B и C - указатели на матрицу строк, правильно распределенную. Я хотел бы оставить возможность перевести матрицу перед выполнением продукта. Функция ниже не работает.
void matrixMul(cublasHandle_t handle,float *A,float *B,float *C, int m,int n,int k,int transA,int transB){
cublasStatus_t stat ; // CUBLAS functions status
float alfa = 1;
float beta = 0;
int
ma = transA ? n:m,
na = transA ? m:n,
nb = transB ? k:n,
mb = transB ? n:k;
if(na!=mb){
puts("Something wrong");
}
//(mb,nb)(ma,na) = (mb,na)
stat= cublasSgemm_v2(handle, (cublasOperation_t) transB, (cublasOperation_t)transA,
nb,ma,mb,&alfa,
B,k,
A,n,&beta,
C,m);
switch (stat) {
case CUBLAS_STATUS_SUCCESS:
puts("Sucess");
break;
default:
printf(">>>>ERRO %d<<<<\n",stat);
break;
}
}
Весь исходный код
// Utilities and system includes
#include <assert.h>
#include <helper_string.h> // helper for shared functions common to CUDA Samples
// CUDA runtime
#include <cuda_runtime.h>
#include <cublas_v2.h>
// CUDA and CUBLAS functions
#include <helper_functions.h>
void getFromDevice(float *h_A,float *d_A,int size){
//printf("Copy input data from the host memory to the CUDA device\n");
cudaError_t err = cudaMemcpy(h_A, d_A, size, cudaMemcpyDeviceToHost);
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to copy vector A from host to device (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
}
//A = (m,n)
//B = (n,k)
//C = (m,k)
void matrixMul(cublasHandle_t handle,float *A,float *B,float *C, int m,int n,int k,int transA,int transB){
cublasStatus_t stat ; // CUBLAS functions status
float alfa = 1;
float beta = 0;
int
ma = transA ? n:m,
na = transA ? m:n,
nb = transB ? k:n,
mb = transB ? n:k;
if(na!=mb){
puts("Something wrong");
}
//(mb,nb)(ma,na) = (mb,na)
stat= cublasSgemm_v2(handle, (cublasOperation_t) transB, (cublasOperation_t)transA,
nb,ma,mb,&alfa,
B,k,
A,n,&beta,
C,m);
switch (stat) {
case CUBLAS_STATUS_SUCCESS:
puts("Sucess");
break;
default:
printf(">>>>ERRO %d<<<<\n",stat);
break;
}
}
float *mallocfDevice(int size){
float *d_C = NULL;
cudaError_t err = cudaMalloc((void **)&d_C, size * sizeof(float));
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to allocate device vector C (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}else{
size_t freeM, total;
cudaMemGetInfo ( &freeM, &total);
printf("MEM:%.3f\n",freeM,total,100 - ((double)freeM/total)*100 );
}
return d_C;
}
void printHostMatrix(int nl, int nc, float *h_s){
for(int j = 0; j < nl ; j++) {
for(int i = 0; i < (nc) ; i++){
int idx = j*nc + i;
printf("%.2f ", h_s[idx]);
}
printf("\n");
}
}
void printfDeviceMatrix(float *d_s,int m, int p){
float *h_s =(float*) malloc(sizeof(float)*m*p);
getFromDevice(h_s,d_s,sizeof(float)*m*p);
printHostMatrix(m,p,h_s);
free(h_s);
}
void sendTofDevice(float *h_A,float *d_A,int size){
//printf("Copy input data from the host memory to the CUDA device\n");
cudaError_t err = cudaMemcpy(d_A, h_A, size*sizeof(float), cudaMemcpyHostToDevice);
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to copy vector A from host to device (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
}
int main(int argc,char **argv){
int ma = 2,
na = 3,
mb = 3,
nb = 2;
float A[] = { 1,2,3,
4,5,6};
float B[] = {7, 8,
9,10,
11,12};
float *C = new float[ma*nb];
float *d_a = mallocfDevice(ma*mb),
*d_b = mallocfDevice(mb*nb),
*d_c = mallocfDevice(ma*nb);
sendTofDevice(A,d_a,ma*na);
sendTofDevice(B,d_b,mb*nb);
cublasHandle_t handle ; // CUBLAS context
cublasCreate (&handle );
puts("A");
printfDeviceMatrix(d_a,ma,na);
puts("B");
printfDeviceMatrix(d_b,mb,nb);
matrixMul(handle, d_a,d_b,d_c,
ma,na,nb,0,0);
puts("AB=C");
printfDeviceMatrix(d_c,ma,nb);
}
1 ответ
Решение
CUBLAS предполагает, что матрица в устройстве хранится в главном столбце:
"где α и β - скаляры, а A, B и C - матрицы, хранимые в основном формате столбцов с размерами op ( A) m × k, op ( B) k × n и C m × n соответственно. Также для матрица А
Узнайте больше по адресу: http://docs.nvidia.com/cuda/cublas/index.html "
Это означает, что матрица должна обрабатываться на устройстве иначе, чем на хосте.