Мобильный OpenCL локальный банк памяти конфликт. Почему использование локальной памяти медленнее, чем глобальная память в ядре?

Я разрабатываю приложение для обнаружения лиц на платформе Android, используя OpenCL, Алгоритм обнаружения лица основан на алгоритме Виолы Джонса. Я попытался сделать Каскад код классификации шаг ядра кода. и я поставил classifier data каскадного этапа 1 среди каскадных этапов local memory(__local) потому что данные классификатора используются для всех рабочих элементов.

Но время профилирования ядра без использования локальной памяти (с использованием глобальной памяти) быстрее, чем при использовании локальной памяти.

отредактировано:

Я загрузил полный код.


с версией локальной памяти

__kernel void CASCADE(__read_only image2d_t input_image, __write_only image2d_t output_image,__constant float* classifierMem,__constant int* idxNumValStageArray, int numTotStage, __constant int* vecSkin){
       int cascadeLocalSize = get_local_size(0);

       __local float localS1F1[42];

       int localIdx = get_local_id(1)*cascadeLocalSize + get_local_id(0);
       if(localIdx<42)
       {
           int stage1Idx = localIdx + idxNumValStageArray[0]+4;
           localS1F1[localIdx] = classifierMem[stage1Idx];
       }
       barrier(CLK_LOCAL_MEM_FENCE);


       float resizeFactor = 1.0;
       int2 im_dim = get_image_dim(input_image);
       unsigned int srcWidth = im_dim.x*(float)resizeFactor;
       unsigned int srcHeight = im_dim.y*(float)resizeFactor;

       int gx = get_global_id(0);
       int gy = get_global_id(1);

       int skinX=0;
       int skinY=0;
       int coordi=vecSkin[512*gy+gx];
       skinX = coordi%im_dim.x;
       skinY = coordi/im_dim.x;

       if( skinX >= 10 && skinY >= 10 )
       {
             skinX -= 10;
             skinY -= 10;
       }      

       int type = gx%3;

       unsigned int windowWidth = classifierMem[0];
       unsigned int windowHeight = classifierMem[1]; 


       unsigned int stageIndex;
       float stageThres;
       float numFeatures;
       unsigned int featureIndex;
       float featureValue;

       if(skinX<srcWidth-windowWidth-1 && skinY<srcHeight-windowHeight-1){
             bool stagePass = true;
             unsigned int index = 0;
             for(unsigned int i=numTotStage; i>0;i--){
                    if(stagePass){
                           if(index == 0){
                                 stageIndex = idxNumValStageArray[0];                                 
                                 stageThres = classifierMem[stageIndex+2];
                                 numFeatures = classifierMem[stageIndex+3];
                                 featureIndex = 0;
                                 featureValue = 0.0;                           
                           }
                           else{
                                 stageIndex = idxNumValStageArray[index];
                                 stageThres = classifierMem[stageIndex+2];
                                 numFeatures = classifierMem[stageIndex+3];
                                 featureIndex = stageIndex+4;
                                 featureValue = 0.0;
                           }
                           float featureThres;
                           float succVal;
                           float failVal;
                           unsigned int numRegions;
                           float regionValue;


                           if(type ==0 && index==0)
                           {
                                 for(unsigned int j=numFeatures; j>0;j--){
                                        if(stagePass){
                                               featureThres=localS1F1[featureIndex++]*(windowWidth*windowHeight);
                                              succVal=localS1F1[featureIndex++];
                                              failVal=localS1F1[featureIndex++];
                                              numRegions = localS1F1[featureIndex++];
                                              regionValue =0.0;

                                              float4 rectValue;
                                              int4 regionP;                                  
                                              for(unsigned int k=numRegions; k>0;k--){

                                                     regionP.x=(int)(localS1F1[featureIndex])+skinX;
                                                     regionP.y=(int)(localS1F1[featureIndex+1])+skinY;
                                                     regionP.z=(int)(localS1F1[featureIndex+2])+regionP.x;
                                                     regionP.w=(int)(localS1F1[featureIndex+3])+regionP.y;

                                                     rectValue.x = read_imagef(input_image, sampler, regionP.xy).x;
                                                     rectValue.y = read_imagef(input_image, sampler, regionP.zy).x;
                                                     rectValue.z = read_imagef(input_image, sampler, regionP.xw).x;
                                                     rectValue.w = read_imagef(input_image, sampler, regionP.zw).x;

                                                     regionValue += dot(rectValue, (float4)(1.0f, -1.0f, -1.0f, 1.0f))*localS1F1[featureIndex+4];

                                                     featureIndex+=5;
                                              }
                                              featureValue += (regionValue < featureThres)?failVal:succVal;                              
                                              if(j*2 == (unsigned int)numFeatures && featureValue*2 < stageThres) stagePass =false;

                                        }// end of if(stagePass) 
                                 }// end of for(unsigned int j=numFeatures; j>0;j--)

                                  index++;
                                 if(featureValue < stageThres)    stagePass =false;
                                 else if(index==numTotStage) write_imagef(output_image, (int2)(skinX, skinY), (0.1));

                           }

                           else if(type ==1 && index ==0)
                           {
                                 featureIndex +=14;
                                 for(unsigned int j=numFeatures; j>0;j--){
                                        if(stagePass){
                                              if(j==1)
                                                     featureIndex -= 42;

                                               featureThres=localS1F1[featureIndex++]*(windowWidth*windowHeight);
                                              succVal=localS1F1[featureIndex++];
                                              failVal=localS1F1[featureIndex++];
                                              numRegions = localS1F1[featureIndex++];
                                              regionValue =0.0;


                                              float4 rectValue;
                                              int4 regionP;                                  
                                              for(unsigned int k=numRegions; k>0;k--){

                                                     regionP.x=(int)(localS1F1[featureIndex])+skinX;
                                                     regionP.y=(int)(localS1F1[featureIndex+1])+skinY;
                                                     regionP.z=(int)(localS1F1[featureIndex+2])+regionP.x;
                                                     regionP.w=(int)(localS1F1[featureIndex+3])+regionP.y;

                                                     rectValue.x = read_imagef(input_image, sampler, regionP.xy).x;
                                                     rectValue.y = read_imagef(input_image, sampler, regionP.zy).x;
                                                     rectValue.z = read_imagef(input_image, sampler, regionP.xw).x;
                                                     rectValue.w = read_imagef(input_image, sampler, regionP.zw).x;

                                                     regionValue += dot(rectValue, (float4)(1.0f, -1.0f, -1.0f, 1.0f))*localS1F1[featureIndex+4];

                                                     featureIndex+=5;
                                              }
                                              featureValue += (regionValue < featureThres)?failVal:succVal;                              
                                              if(j*2 == (unsigned int)numFeatures && featureValue*2 < stageThres) stagePass =false;
                                        }
                                 }

                                  index++;
                                 if(featureValue < stageThres)    stagePass =false;
                                 else if(index==numTotStage) write_imagef(output_image, (int2)(skinX, skinY), (0.1));
                           }

                           else if(index == 0)
                           {
                                 featureIndex +=28;
                                 for(unsigned int j=numFeatures; j>0;j--){
                                        if(stagePass){

                                              if(j==2)     featureIndex -= 42;

                                               featureThres=localS1F1[featureIndex++]*(windowWidth*windowHeight);
                                              succVal=localS1F1[featureIndex++];
                                              failVal=localS1F1[featureIndex++];
                                              numRegions = localS1F1[featureIndex++];
                                              regionValue =0.0;

                                              float4 rectValue;
                                              int4 regionP;                                  
                                              for(unsigned int k=numRegions; k>0;k--){

                                                     regionP.x=(int)(localS1F1[featureIndex])+skinX;
                                                     regionP.y=(int)(localS1F1[featureIndex+1])+skinY;
                                                     regionP.z=(int)(localS1F1[featureIndex+2])+regionP.x;
                                                     regionP.w=(int)(localS1F1[featureIndex+3])+regionP.y;

                                                     rectValue.x = read_imagef(input_image, sampler, regionP.xy).x;
                                                     rectValue.y = read_imagef(input_image, sampler, regionP.zy).x;
                                                     rectValue.z = read_imagef(input_image, sampler, regionP.xw).x;
                                                     rectValue.w = read_imagef(input_image, sampler, regionP.zw).x;

                                                     regionValue += dot(rectValue, (float4)(1.0f, -1.0f, -1.0f, 1.0f))*localS1F1[featureIndex+4];

                                                     featureIndex+=5;
                                              }// end of for(unsigned int k=numRegions; k>0;k--)
                                              featureValue += (regionValue < featureThres)?failVal:succVal;                              
                                              if(j*2 == (unsigned int)numFeatures && featureValue*2 < stageThres) stagePass =false;

                                        }// end of if(stagePass)
                                 }//end of for(unsigned int j=numFeatures; j>0;j--)

                                 index++;
                                 if(featureValue < stageThres)    stagePass =false;
                                 else if(index==numTotStage) write_imagef(output_image, (int2)(skinX, skinY), (0.1));
                           }

                           //stage 
                           else{
                                 for(unsigned int j=numFeatures; j>0;j--){
                                        if(stagePass){
                                               featureThres=classifierMem[featureIndex++]*(windowWidth*windowHeight);
                                              succVal=classifierMem[featureIndex++];
                                              failVal=classifierMem[featureIndex++];
                                              numRegions = classifierMem[featureIndex++];
                                              regionValue =0.0;
                                              float4 rectValue;
                                              int4 regionP;                                  
                                              for(unsigned int k=numRegions; k>0;k--){
                                                     regionP.x=(int)(classifierMem[featureIndex])+skinX;
                                                     regionP.y=(int)(classifierMem[featureIndex+1])+skinY;
                                                     regionP.z=(int)(classifierMem[featureIndex+2])+regionP.x;
                                                     regionP.w=(int)(classifierMem[featureIndex+3])+regionP.y;
                                                     rectValue.x = read_imagef(input_image, sampler, regionP.xy).x;
                                                     rectValue.y = read_imagef(input_image, sampler, regionP.zy).x;
                                                     rectValue.z = read_imagef(input_image, sampler, regionP.xw).x;
                                                     rectValue.w = read_imagef(input_image, sampler, regionP.zw).x;
                                                     regionValue += dot(rectValue, (float4)(1.0f, -1.0f, -1.0f, 1.0f))*classifierMem[featureIndex+4]; 
                                                     featureIndex+=5;
                                              }
                                              featureValue += (regionValue < featureThres)?failVal:succVal;                              
                                              if(j*2 == (unsigned int)numFeatures && featureValue*2 < stageThres) stagePass =false;
                                        }
                                 }
                                 index++;
                                 if(featureValue < stageThres)    stagePass =false;
                                 else if(index==numTotStage) write_imagef(output_image, (int2)(skinX, skinY), (0.1));
                           }
                    }
             }      
       }else return;
}

оригинальная версия (без локальной памяти)

__kernel void CASCADE(__read_only image2d_t input_image, __write_only image2d_t output_image,__constant float* classifierMem,__constant int* idxNumValStageArray, int numTotStage, __constant int* vecSkin){
    float resizeFactor = 1.0;

    int2 im_dim = get_image_dim(input_image);

    unsigned int srcWidth = im_dim.x*(float)resizeFactor;
    unsigned int srcHeight = im_dim.y*(float)resizeFactor;

    int gx = get_global_id(0);
    int gy = get_global_id(1);


    int skinX=0;
    int skinY=0;
    int coordi=vecSkin[512*gy+gx];
    skinX = coordi%im_dim.x;
    skinY = coordi/im_dim.x;

        if( skinX >= 10 && skinY >= 10 )
    {
        skinX -= 10;
        skinY -= 10;
    }   

    unsigned int windowWidth = classifierMem[0];
    unsigned int windowHeight = classifierMem[1];   

    if(gx<srcWidth-windowWidth-1 && gy<srcHeight-windowHeight-1){
        bool stagePass = true;
        unsigned int index = 0;
        for(unsigned int i=numTotStage; i>0;i--){
            if(stagePass){
                unsigned int stageIndex = idxNumValStageArray[index++];
                float stageThres = classifierMem[stageIndex+2];
                float numFeatures = classifierMem[stageIndex+3];
                unsigned int featureIndex = stageIndex+4;
                float featureValue = 0.0;               

                for(unsigned int j=numFeatures; j>0;j--){
                    if(stagePass){
                        float featureThres=classifierMem[featureIndex++]*(windowWidth*windowHeight);
                        float succVal=classifierMem[featureIndex++];
                        float failVal=classifierMem[featureIndex++];
                        unsigned int numRegions = classifierMem[featureIndex++];
                        float regionValue =0.0;

                        for(unsigned int k=numRegions; k>0;k--){                    
                            float4 rectValue;
                            int4 regionP;

                            regionP.x=(int)(classifierMem[featureIndex])+skinX;
                            regionP.y=(int)(classifierMem[featureIndex+1])+skinY;
                            regionP.z=(int)(classifierMem[featureIndex+2])+regionP.x;
                            regionP.w=(int)(classifierMem[featureIndex+3])+regionP.y;

                            rectValue.x = read_imagef(input_image, sampler, regionP.xy).x;
                            rectValue.y = read_imagef(input_image, sampler, regionP.zy).x;
                            rectValue.z = read_imagef(input_image, sampler, regionP.xw).x;
                            rectValue.w = read_imagef(input_image, sampler, regionP.zw).x;

                            regionValue += dot(rectValue, (float4)(1.0f, -1.0f, -1.0f, 1.0f))*classifierMem[featureIndex+4];

                            featureIndex+=5;
                        }

                        featureValue += (regionValue < featureThres)?failVal:succVal;                   

                        if(j*2 == (unsigned int)numFeatures && featureValue*2 < stageThres) stagePass =false;
                    }
                }
                if(featureValue < stageThres)   stagePass =false;
                else if(index==numTotStage) write_imagef(output_image, (int2)(skinX, skinY), (0.1));
            }
        }   
    }else return;
}

время профилирования: исходная версия (без локальной памяти): измененная версия 24 мс (с локальной записью): 28 мс

отредактировано: фактически localWorkSize NULL, потому что globalWorkSize всегда варьируется в зависимости от размера вектора, в который помещается NDRangeKernel. Когда поставил конкретный localWorkSize, частота обнаружения лиц падает... Так что я попытался поставить localWorkSize NUll, тогда скорость обнаружения лиц хорошая. Итак, я хочу, чтобы причина.

это код хоста:

    //localWorkSize[0] = 16;
    //localWorkSize[1] = 12; 
    numThreadsX=512;
    globalWorkSize[0] = numThreadsX;
    globalWorkSize[1] =  vecCoordinate.size()% numThreadsX == 0 ? vecCoordinate.size()/ numThreadsX :(vecCoordinate.size()/ numThreadsX) + 1;
    errNum = clEnqueueWriteBuffer(commandQueue,classifierMem,CL_TRUE,0,sizeof(float)*cntValArray,stageValArray,0,NULL,NULL); 
    errNum |= clEnqueueWriteBuffer(commandQueue,idxStageMem,CL_TRUE,0,sizeof(int)*haar.numStages,idxNumValStageArray,0,NULL,NULL); 
    errNum |= clSetKernelArg(kHaar_Cascade, 0, sizeof(memObjBuffer_Haar22), &memObjBuffer_Haar22);
    errNum |= clSetKernelArg(kHaar_Cascade, 1, sizeof(memObjBuffer22), &memObjBuffer22);
    errNum |= clSetKernelArg(kHaar_Cascade, 2, sizeof(cl_mem), &classifierMem);
    errNum |= clSetKernelArg(kHaar_Cascade, 3, sizeof(cl_mem), &idxStageMem);
    errNum |= clSetKernelArg(kHaar_Cascade, 4, sizeof(cl_int), &haar.numStages);
    errNum |= clSetKernelArg(kHaar_Cascade, 5, sizeof(cl_mem), &memVecCoordi);

    errNum = clEnqueueNDRangeKernel(commandQueue, kHaar_Cascade, 2, NULL,globalWorkSize, NULL,0, NULL, &event[3]);

2 ответа

Решение

Есть множество причин:

  • Расхождение потоков памяти
  • Барьеры не свободны
  • Больше инструкций
  • На большинстве платформ постоянная память в значительной степени совпадает с общей памятью, поэтому дополнительная работа не приносит никакой выгоды.
  • Мы не знаем, сколько считываний экономит версия с общей памятью - пожалуйста, сообщите нам размер рабочей группы. Чем оно меньше, тем меньше операций чтения из нелокальной памяти мы сохраняем. Не то, чтобы это имело значение, если это постоянная память.

Профилируйте их обоих и посмотрите, показывают ли результаты профилировщика что-либо при максимальном использовании чего-либо, и укажите нам, что это такое.

Кроме того, я не уверен, что ваши localIdx и stage1Idx имеют смысл, они могут выходить за пределы массива и вызывать странное поведение. По крайней мере, для данного gx/gy вы выглядите так, как будто используете другие индексы из classifierMem.

У вас есть пять значений с плавающей запятой (20 байтов), которые читаются каждым рабочим элементом. Большинство современных графических процессоров имеют аппаратно управляемые кэши, которые находятся на уровне иерархии памяти, аналогичном управляемой пользователем локальной памяти. В вашей версии, в которой не используется локальная память, эти 20 байт будут весьма удачно размещены в кеше, близком к ALU, и обеспечат все преимущества в производительности при повторном использовании данных, на которые вы можете надеяться. Ваша версия, которая использует локальную память, просто делает то же самое явно, но также добавляет кучу дополнительных издержек для ручного запуска копий и некоторую дополнительную синхронизацию между рабочими элементами, что неизбежно замедляет работу.

Локальная память может обеспечить выигрыш в производительности в определенных сценариях, если применять ее осторожно. Однако во многих случаях аппаратные кэши будут работать лучше и оставят вас с гораздо более простым кодом.

Другие вопросы по тегам