Использование spmd или parfor в Matlab
В настоящее время я пытаюсь проводить эксперименты параллельно с использованием MATLAB 2011b, которые занимают очень много времени. Мне интересно, может ли кто-нибудь помочь мне "перевести" следующий блок универсального (нерабочего) кода parfor во что-то, что будет работать в коде spmd.
amountOfOptions = 8;
startStockPrice = 60 + 40 * rand(1,amountOfOptions);
strike = 70 + 20 * rand(1,amountOfOptions);
v = 0.35 + 0.3 * rand(1,amountOfOptions);
IV = 0.25 + 0.1 * rand(1,amountOfOptions);
sigma = 0.15 + 0.65 * rand(1,amountOfOptions);
riskFreeRate = 0.05 + 0.1 * rand(1,amountOfOptions);
tn = fix(1 + 3 * rand(1,amountOfOptions));
tic;
for g=1:amountOfOptions
for i=1:10
N = i*5;
Cti = zeros(1,N);
Sti = zeros(1,N);
B = zeros(1,N);
d1_ti = zeros(1,N);
delta_t = zeros(1,N);
ctn = 0;
cmtn = 0;
result = 0;
t = (1:N)/N;
dt = 1/N;
c_mt0 = 0;
for j=1:10
B = sigma(g)*randn(1,N);
part1 = startStockPrice(g)*normcdf((log(startStockPrice(g)/strike(g))+(riskFreeRate(g)+(0.5*(IV(g))^2))*(tn))/(v(g)*sqrt(tn)),0,sigma(g));
part2 = exp(-riskFreeRate(g)*tn)*strike(g)*normcdf((log(startStockPrice(g)/strike(g))+(riskFreeRate(g)-(0.5*(IV(g))^2))*(tn))/(IV(g)*sqrt(tn)));
c_mt0 = part1 - part2;
Sti(1) = startStockPrice(g);
for j = 2:N-1
Sti(j)=Sti(j-1)*exp( (riskFreeRate(g)-dt*0.5*sigma(g)^2) * t(j)*dt + sigma(g)*B(j));
end
Sti(N) = Sti(N-1)*exp( (riskFreeRate(g)-dt*0.5*sigma(g)^2) * t(N)*dt + sigma(g)*B(N));
parfor i = 1:N-1
d1ti(i) = (log(Sti(i)/strike(g)) + (riskFreeRate(g) + v(g).^2/2) * (tn - t(i))) / (v(g) * sqrt(tn - t(i)));
end
parfor i = 1:N-1
Cti(i) = Sti(i).*normcdf((d1ti(i)),0,sigma(g)) - exp(-riskFreeRate(g).*(tn(g) - t(i))).*strike(g).*normcdf(((d1ti(i) - v(g)*sqrt(tn(g) - t(i)))) , 0 ,sigma(g));
end
if((Sti(N) - strike(g)) > 0)
ctn = Sti(N) - strike(g);
else
ctn = 0;
end
parfor i = 1:N-1
delta_t(i) = normcdf((d1ti(i)),0,sigma(g));
end
cmtn = ctn - c_mt0*exp(riskFreeRate(g)*tn(g));
result= cmtn + result;
end
result= result/10;
end
end
time = toc;
1 ответ
Решение
Я всегда использовал parfor вместо spmd, потому что это более логично для меня. Поскольку parfor требует, чтобы каждая итерация внутри цикла была независимой от всех других итераций. Это так же просто, как инкапсулировать его, используя следующий метод.
% Initial Variables
amountOfOptions = 8;
startStockPrice = 60 + 40 * rand(1,amountOfOptions);
strike = 70 + 20 * rand(1,amountOfOptions);
v = 0.35 + 0.3 * rand(1,amountOfOptions);
IV = 0.25 + 0.1 * rand(1,amountOfOptions);
sigma = 0.15 + 0.65 * rand(1,amountOfOptions);
riskFreeRate = 0.05 + 0.1 * rand(1,amountOfOptions);
tn = fix(1 + 3 * rand(1,amountOfOptions));
% Open Parpool
try
parpool;
catch
end
% Use parfor
parfor i = 1:amountOfOptions
[startStockPrice(i),strike(i),v(i),IV(i),sigma(i),riskFreeRate(i),tn(i)] = fun( startStockPrice(i),strike(i),v(i),IV(i),sigma(i),riskFreeRate(i),tn(i) );
end
Затем вы можете создать инкапсулирующую функцию fun
который примет все параметры и обработает / повторно выдаст их. Он будет иметь следующее определение / заголовок:
function [startStockPrice,strike,v,IV,sigma,riskFreeRate,tn] = fun( startStockPrice,strike,v,IV,sigma,riskFreeRate,tn );