haven::read_sav показывает метки значений, а не коды

Я использую haven импортировать .sav подать в R, Интересно, как показывать метки значений, а не числовые коды. В следующем примере я хочу показать названия видов, а не номера 1, 2, 3.

library(haven)
path <- system.file("examples", "iris.sav", package = "haven")
df1 <- read_sav(path)
head(df1)

# A tibble: 6 x 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species  
<dbl>       <dbl>        <dbl>       <dbl> <dbl+lbl>
1         5.10        3.50         1.40       0.200 1        
2         4.90        3.00         1.40       0.200 1        
3         4.70        3.20         1.30       0.200 1        
4         4.60        3.10         1.50       0.200 1        
5         5.00        3.60         1.40       0.200 1        
6         5.40        3.90         1.70       0.400 1  

str(df1)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame':   150 obs. of  5 variables:
  $ Sepal.Length: atomic  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
..- attr(*, "format.spss")= chr "F8.2"
$ Sepal.Width : atomic  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
..- attr(*, "format.spss")= chr "F8.2"
$ Petal.Length: atomic  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
..- attr(*, "format.spss")= chr "F8.2"
$ Petal.Width : atomic  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
..- attr(*, "format.spss")= chr "F8.2"
$ Species     :Class 'labelled'  atomic [1:150] 1 1 1 1 1 1 1 1 1 1 ...
.. ..- attr(*, "format.spss")= chr "F8.0"
.. ..- attr(*, "labels")= Named num [1:3] 1 2 3
.. .. ..- attr(*, "names")= chr [1:3] "setosa" "versicolor" "virginica"

2 ответа

Решение

Нашел очень простое решение внутри haven пакет

haven::as_factor(df1)
# A tibble: 150 x 5
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
          <dbl>       <dbl>        <dbl>       <dbl> <fct>  
 1          5.1         3.5          1.4         0.2 setosa 
 2          4.9         3            1.4         0.2 setosa 
 3          4.7         3.2          1.3         0.2 setosa 
 4          4.6         3.1          1.5         0.2 setosa 
 5          5           3.6          1.4         0.2 setosa 
 6          5.4         3.9          1.7         0.4 setosa 
 7          4.6         3.4          1.4         0.3 setosa 
 8          5           3.4          1.5         0.2 setosa 
 9          4.4         2.9          1.4         0.2 setosa 
10          4.9         3.1          1.5         0.1 setosa 
# ... with 140 more rows

Вы можете использовать функцию под названием characterize() или же factorize() из пакета рио, чтобы сделать преобразование этого типа структуры данных.

например:

data$Species1 <- rio::characterize(data$Species)

Если вы выберете характеризацию, столбец преобразуется в символ, но в случае использования факторизации столбец преобразуется в фактор.

Вы можете посетить здесь для справки:

Не уверен, что вы хотели, как это или нет, может быть, вы хотите преобразовать его при импорте.

Спасибо, надеюсь, это поможет.

Запуск преобразования с помощью factorize(),

Выход:

# A tibble: 150 x 6
   #    Sepal.Length Sepal.Width Petal.Length Petal.Width   Species Species1
   #           <dbl>       <dbl>        <dbl>       <dbl> <dbl+lbl>   <fctr>
   #  1          5.1         3.5          1.4         0.2         1   setosa
   #  2          4.9         3.0          1.4         0.2         1   setosa
   #  3          4.7         3.2          1.3         0.2         1   setosa
   #  4          4.6         3.1          1.5         0.2         1   setosa
   #  5          5.0         3.6          1.4         0.2         1   setosa
Другие вопросы по тегам