TensorFlow: параметры не обновляются при обучении
Я реализую модель классификации с помощью TensorFlow
Проблема, с которой я сталкиваюсь, заключается в том, что мои веса и ошибки не обновляются, когда я выполняю этап обучения. В результате моя сеть продолжает возвращать те же результаты.
Я разработал свою модель на основе примера MNIST с веб-сайта TensorFlow.
import numpy as np
import tensorflow as tf
sess = tf.InteractiveSession()
#load dataset
dataset = np.loadtxt('char8k.txt', dtype='float', comments='#', delimiter=",")
Y = np.asmatrix( dataset[:,0] )
X = np.asmatrix( dataset[:,1:1201] )
m = 11527
labels = 26
# y is update to 11527x26
Yt = np.zeros((m,labels))
for i in range(0,m):
index = Y[0,i] - 1
Yt[i,index]= 1
Y = Yt
Y = np.asmatrix(Y)
#------------------------------------------------------------------------------
#graph settings
x = tf.placeholder(tf.float32, shape=[None, 1200])
y_ = tf.placeholder(tf.float32, shape=[None, 26])
Wtest = tf.Variable(tf.truncated_normal([1200,26], stddev=0.001))
W = tf.Variable(tf.truncated_normal([1200,26], stddev=0.001))
b = tf.Variable(tf.zeros([26]))
sess.run(tf.initialize_all_variables())
y = tf.nn.softmax(tf.matmul(x,W) + b)
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
Wtest = W
for i in range(10):
print("iteracao:")
print(i)
Xbatch = X[np.random.randint(X.shape[0],size=100),:]
Ybatch = Y[np.random.randint(Y.shape[0],size=100),:]
train_step.run(feed_dict={x: Xbatch, y_: Ybatch})
print("atualizacao de pesos")
print(Wtest==W)#monitora atualizaçao dos pesos
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print("precisao:Y")
print accuracy.eval(feed_dict={x: X, y_: Y})
print(" ")
print(" ")
1 ответ
Проблема, вероятно, возникает из-за того, как вы инициализируете матрицу весов, W
, Если он инициализирован для всех нулей, все нейроны будут следовать одному и тому же градиенту на каждом шаге, что приведет к тому, что сеть не будет обучена. Замена линии
W = tf.Variable(tf.zeros([1200,26]))
... с чем-то вроде
W = tf.Variable(tf.truncated_normal([1200,26], stddev=0.001))
... должен заставить его начать обучение.
Этот вопрос на сайте CrossValidated имеет хорошее объяснение того, почему вы не должны инициализировать все свои веса до нуля.