Доказательство принципа коиндукции для ко-натуральных чисел
Я должен признать, что я не очень хорош в коиндукции. Я пытаюсь показать принцип бисимуляции для ко-натуральных чисел, но я застрял на паре (симметричных) случаев.
CoInductive conat :=
| cozero : conat
| cosucc : conat -> conat.
CoInductive conat_eq : conat -> conat -> Prop :=
| eqbase : conat_eq cozero cozero
| eqstep : forall m n, conat_eq m n -> conat_eq (cosucc m) (cosucc n).
Section conat_eq_coind.
Variable R : conat -> conat -> Prop.
Hypothesis H1 : R cozero cozero.
Hypothesis H2 : forall (m n : conat), R (cosucc m) (cosucc n) -> R m n.
Theorem conat_eq_coind : forall m n : conat,
R m n -> conat_eq m n.
Proof.
cofix. intros m n H.
destruct m, n.
simpl in H1.
- exact eqbase.
- admit.
- admit.
- specialize (H2 H).
specialize (conat_eq_coind _ _ H2).
exact (eqstep conat_eq_coind).
Admitted.
End conat_eq_coind.
Вот как выглядит контекст, когда фокусируется на первом допущенном случае:
1 subgoal
R : conat -> conat -> Prop
H1 : R cozero cozero
H2 : forall m n : conat, R (cosucc m) (cosucc n) -> R m n
conat_eq_coind : forall m n : conat, R m n -> conat_eq m n
n : conat
H : R cozero (cosucc n)
______________________________________(1/1)
conat_eq cozero (cosucc n)
Мысли?
1 ответ
Решение
Я не понимаю, что вы пытаетесь доказать здесь. Это не верно. Возьмите тривиальный предикат, который всегда True
например.
Theorem conat_eq_coind_false :
~ forall (R : conat -> conat -> Prop) (H1 : R cozero cozero)
(H2 : forall (m n : conat), R (cosucc m) (cosucc n) -> R m n)
(m n : conat) (H3 : R m n), conat_eq m n.
Proof.
intros contra.
specialize (contra (fun _ _ => True) I (fun _ _ _ => I)
cozero (cosucc cozero) I).
inversion contra.
Qed.