Python Pandas: случайное распределение контрольных и лечебных групп на основе%

Я работаю над проектом эксперимента, в котором мне нужно разделить информационный фрейм df на контрольную группу и группу лечения по% по существующим группировкам.

Это датафрейм df:

df.head()

customer_id | Group | many other columns
ABC             1
CDE             1
BHF             2
NID             1
WKL             2
SDI             2

pd.pivot_table(df,index=['Group'],values=["customer_id"],aggfunc=lambda x: len(x.unique()))

Group 1  : 55394
Group 2  : 34889

Теперь мне нужно добавить столбец с надписью "Флаг" в DF. Для группы 1 я хочу произвольно назначить 50% "Контроль" и 50% "Тест". Для группы 2 я хочу случайным образом назначить 40% "Контроль" и 60% "Тест".

Результат, который я ищу:

customer_id | Group | many other columns | Flag
ABC             1                          Test
CDE             1                          Control
BHF             2                          Test
NID             1                          Test
WKL             2                          Control
SDI             2                          Test

1 ответ

Решение

Мы можем использовать метод numpy.random.choice():

In [160]: df['Flag'] = \
     ...: df.groupby('Group')['customer_id']\
     ...:   .transform(lambda x: np.random.choice(['Control','Test'], len(x), 
                                                  p=[.5,.5] if x.name==1 else [.4,.6]))
     ...:

In [161]: df
Out[161]:
  customer_id  Group     Flag
0         ABC      1  Control
1         CDE      1     Test
2         BHF      2     Test
3         NID      1  Control
4         WKL      2     Test
5         SDI      2  Control

ОБНОВИТЬ:

In [8]: df
Out[8]:
  customer_id  Group
0         ABC      1
1         CDE      1
2         BHF      2
3         NID      1
4         WKL      2
5         SDI      2
6         XXX      3
7         XYZ      3
8         XXX      3

In [9]: d = {1:[.5,.5], 2:[.4,.6], 3:[.2,.8]}

In [10]: df['Flag'] = \
    ...: df.groupby('Group')['customer_id'] \
    ...:   .transform(lambda x: np.random.choice(['Control','Test'], len(x), p=d[x.name]))
    ...:

In [11]: df
Out[11]:
  customer_id  Group     Flag
0         ABC      1     Test
1         CDE      1     Test
2         BHF      2  Control
3         NID      1  Control
4         WKL      2  Control
5         SDI      2     Test
6         XXX      3     Test
7         XYZ      3     Test
8         XXX      3     Test
Другие вопросы по тегам