Как мне сложить определенное значение за определенный день недели?
У меня есть дата-фрейм телефонных звонков, который содержит метку времени и продолжительность звонка. Как бы я суммировал общую продолжительность каждого дня для всех телефонных звонков? Метка времени - это строка, поэтому у меня возникли проблемы с ее анализом до фактической даты. Я не уверен, имеет ли спарк поддержку временных меток.
Таблица данных
timestamp | duration
1414592818364 | 210
1414575535061 | 110
1411328461890 | 140
1434606396339 | 90
1 ответ
Решение
Вы можете использовать UDF для анализа меток времени. Ниже вы можете найти решение Python, но сделать то же самое довольно просто, используя другой поддерживаемый язык:
С сырым SQL:
from datetime import datetime
df = sqlContext.createDataFrame(sc.parallelize([
{'timestamp': 1414592818364, 'duration': 210},
{'timestamp': 1414575535061, 'duration': 110},
{'timestamp': 1411328461890, 'duration': 140},
{'timestamp': 1434606396339, 'duration': 90}]))
def parse_timestamp(tm):
dt = datetime.fromtimestamp(tm / 1000)
return '{0}-{1}-{2}'.format(dt.year, dt.month, dt.day)
sqlContext.registerFunction('parse_timestamp', parse_timestamp)
df.registerTempTable('df')
query = '''
SELECT parse_timestamp(timestamp) AS date, sum(duration) AS total_durtaion
FROM df GROUP BY parse_timestamp(timestamp)'''
(sqlContext
.sql(query)
.show())
или SQL DSL:
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
(df
.withColumn('date', udf(parse_timestamp, StringType())(df.timestamp))
.select('date', 'duration')
.groupby('date')
.sum()
.show())
РЕДАКТИРОВАТЬ:
Начиная с Spark 1.5 нет необходимости в кастомном udf.
from pyspark.sql.functions import from_unixtime, col, sum
(df
.groupBy(from_unixtime(df.timestamp / 1000, "yyyy-MM-dd").alias("date"))
.agg(sum(col("duration"))))