Нейронная сеть с Pybrain не будет сходиться
Я пытаюсь построить простую нейронную сеть, используя пакеты Python и Pybrain. Поскольку я начинаю изучать и метод и пакет Pybrain. Я попытался сделать очень простой нейронный файл с некоторыми реальными данными, которые у меня есть!
Я знаю, что между моими данными есть базовая связь, однако код не сходится вообще, и результаты после обучения в основном одинаковы для любого набора реальных проверочных данных, которые я там помещаю. Ниже мой код и небольшая часть данных. У меня есть более 5000 строк данных с известным g для обучения моей сети, но это не имеет значения, сколько очков добавлено к обучению.
from pybrain.tools.shortcuts import buildNetwork as bld
from pybrain.datasets import SupervisedDataSet as spds
from pybrain.supervised.trainers import BackpropTrainer as bpt
import numpy as np
u,g,r,i,z = np.loadtxt("dataset.dat",unpack=True)
data = spds(4,1)
net = bld(4,1000,1)
for i in range(0,len(umag)):
data.addSample((u[i],r[i],i[i],z[i]),(g[i]))
trainer = bpt(net,data)
trainer.trainUntilConvergence(dataset=data,maxEpochs=300,validationProportion=0.5)
p = net.activate([17.136,15.812,15.693,15.675])
print p
#expected result 16.225
p = net.activate([19.382,17.684,17.511,17.435])
# 18.195 - expected result
print p
18.14981 15.10829 13.96468 -10.8685 13.20411
16.84580 15.17839 14.61974 14.44930 14.44493
16.70895 15.57959 15.28097 15.16538 15.19260
18.44166 16.32709 15.45345 15.14938 15.04544
18.03881 16.49129 15.96768 15.78446 15.77211
21.15679 18.66248 17.46381 16.97513 16.75475
19.25665 17.80023 17.18956 16.97563 16.94967
17.01522 16.08040 15.85172 15.81930 15.92262
19.21695 17.72263 17.17900 16.98280 16.97201
19.98507 18.56911 17.98143 17.80738 17.81714
16.94824 15.97417 15.70555 15.59221 15.64357
21.20893 19.40982 18.68114 18.46647 18.43065
18.72652 17.38880 16.93716 16.73246 16.75096
20.57421 19.55045 19.15475 18.99772 19.02503
22.48833 20.07709 18.68276 17.60561 17.09613
22.27604 20.34056 19.66521 19.37319 19.30457
20.58372 19.18035 18.64691 18.43370 18.39288
22.25103 20.74570 20.16532 19.94144 19.78580
22.49646 19.63043 18.39409 17.97594 17.77803
19.22686 17.55373 16.97127 16.76445 16.70418
20.44500 19.34502 18.96556 18.80437 18.78767
22.69331 21.19628 19.89190 19.39628 19.11377
19.51075 18.02397 17.46963 17.31436 17.27759
19.92604 18.49456 17.97421 17.83519 17.80557
19.18904 18.22256 17.84221 17.70319 17.64457
20.23186 18.43468 17.81423 17.60103 17.54677
19.86590 18.32822 17.75089 17.57386 17.53067
20.84188 19.78345 19.42506 19.27895 19.34572
22.14103 21.86670 21.74832 21.61244 21.99680
18.02018 16.69380 16.23947 16.12869 16.09864
19.92574 18.63316 18.15877 17.95703 17.90224
1 ответ
Вообще говоря, я получаю лучшие результаты, если масштабирую свои данные от 0 до 1 или еще лучше от 0,1 до 0,9. Выход нейрона обычно будет между 0 и 1. Вы можете попробовать масштабировать свои входы и выходы, чтобы они находились в этом диапазоне, и посмотреть, получите ли вы лучшие результаты.