Изменять переменные в таблицах базы данных напрямую с помощью dplyr
Вот данные mtcars в файле базы данных MonetDBLite.
library(MonetDBLite)
library(tidyverse)
library(DBI)
dbdir <- getwd()
con <- dbConnect(MonetDBLite::MonetDBLite(), dbdir)
dbWriteTable(conn = con, name = "mtcars_1", value = mtcars)
data_mt <- con %>% tbl("mtcars_1")
Я хочу использовать dplyr mutate для создания новых переменных и добавления (commit!) В таблицу базы данных? Что-то вроде
data_mt %>% select(mpg, cyl) %>% mutate(var = mpg/cyl) %>% dbCommit(con)
Желаемый результат должен быть таким же, когда мы делаем:
dbSendQuery(con, "ALTER TABLE mtcars_1 ADD COLUMN var DOUBLE PRECISION")
dbSendQuery(con, "UPDATE mtcars_1 SET var=mpg/cyl")
Как это сделать?
1 ответ
Вот пара функций, create
а также update.tbl_lazy
,
Они соответственно реализуют CREATE TABLE
, который был простым, а ALTER TABLE
/UPDATE
пара, которая намного меньше:
СОЗДАЙТЕ
create <- function(data,name){
DBI::dbSendQuery(data$src$con,
paste("CREATE TABLE", name,"AS", dbplyr::sql_render(data)))
dplyr::tbl(data$src$con,name)
}
пример:
library(dbplyr)
library(DBI)
con <- DBI::dbConnect(RSQLite::SQLite(), path = ":memory:")
copy_to(con, head(iris,3),"iris")
tbl(con,"iris") %>% mutate(Sepal.Area= Sepal.Length * Sepal.Width) %>% create("iris_2")
# # Source: table<iris_2> [?? x 6]
# # Database: sqlite 3.22.0 []
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species Sepal.Area
# <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
# 1 5.1 3.5 1.4 0.2 setosa 17.8
# 2 4.9 3 1.4 0.2 setosa 14.7
# 3 4.7 3.2 1.3 0.2 setosa 15.0
ОБНОВИТЬ
update.tbl_lazy <- function(.data,...,new_type="DOUBLE PRECISION"){
quos <- rlang::quos(...)
dots <- rlang::exprs_auto_name(quos, printer = tidy_text)
# extract key parameters from query
sql <- dbplyr::sql_render(.data)
con <- .data$src$con
table_name <-gsub(".*?(FROM (`|\")(.+?)(`|\")).*","\\3",sql)
if(grepl("\nWHERE ",sql)) where <- regmatches(sql, regexpr("WHERE .*",sql))
else where <- ""
new_cols <- setdiff(names(dots),colnames(.data))
# Add empty columns to base table
if(length(new_cols)){
alter_queries <- paste("ALTER TABLE",table_name,"ADD COLUMN",new_cols,new_type)
purrr::walk(alter_queries, ~{
rs <- DBI::dbSendStatement(con, .)
DBI::dbClearResult(rs)})}
# translate unevaluated dot arguments to SQL instructions as character
translations <- purrr::map_chr(dots, ~ translate_sql(!!! .))
# messy hack to make translations work
translations <- gsub("OVER \\(\\)","",translations)
# 2 possibilities: called group_by or (called filter or called nothing)
if(identical(.data$ops$name,"group_by")){
# ERROR if `filter` and `group_by` both used
if(where != "") stop("Using both `filter` and `group by` is not supported")
# Build aggregated table
gb_cols <- paste0('"',.data$ops$dots,'"',collapse=", ")
gb_query0 <- paste(translations,"AS", names(dots),collapse=", ")
gb_query <- paste("CREATE TABLE TEMP_GB_TABLE AS SELECT",
gb_cols,", ",gb_query0,
"FROM", table_name,"GROUP BY", gb_cols)
rs <- DBI::dbSendStatement(con, gb_query)
DBI::dbClearResult(rs)
# Delete temp table on exit
on.exit({
rs <- DBI::dbSendStatement(con,"DROP TABLE TEMP_GB_TABLE")
DBI::dbClearResult(rs)
})
# Build update query
gb_on <- paste0(table_name,'."',.data$ops$dots,'" = TEMP_GB_TABLE."', .data$ops$dots,'"',collapse=" AND ")
update_query0 <- paste0(names(dots)," = (SELECT ", names(dots), " FROM TEMP_GB_TABLE WHERE ",gb_on,")",
collapse=", ")
update_query <- paste("UPDATE", table_name, "SET", update_query0)
rs <- DBI::dbSendStatement(con, update_query)
DBI::dbClearResult(rs)
} else {
# Build update query in case of no group_by and optional where
update_query0 <- paste(names(dots),'=',translations,collapse=", ")
update_query <- paste("UPDATE", table_name,"SET", update_query0,where)
rs <- DBI::dbSendStatement(con, update_query)
DBI::dbClearResult(rs)
}
tbl(con,table_name)
}
Пример 1, определить 2 новых числовых столбца:
tbl(con,"iris") %>% update(x=pmax(Sepal.Length,Sepal.Width),
y=pmin(Sepal.Length,Sepal.Width))
# # Source: table<iris> [?? x 7]
# # Database: sqlite 3.22.0 []
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species x y
# <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
# 1 5.1 3.5 1.4 0.2 setosa 5.1 3.5
# 2 4.9 3 1.4 0.2 setosa 4.9 3
# 3 4.7 3.2 1.3 0.2 setosa 4.7 3.2
Пример 2, изменить существующий столбец, создать 2 новых столбца разных типов:
tbl(con,"iris") %>%
update(x= Sepal.Length*Sepal.Width,
z= 2*y,
a= Species %||% Species,
new_type = c("DOUBLE","VARCHAR(255)"))
# # Source: table<iris> [?? x 9]
# # Database: sqlite 3.22.0 []
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species x y z a
# <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <chr>
# 1 5.1 3.5 1.4 0.2 setosa 17.8 3.5 7 setosasetosa
# 2 4.9 3 1.4 0.2 setosa 14.7 3 6 setosasetosa
# 3 4.7 3.2 1.3 0.2 setosa 15.0 3.2 6.4 setosasetosa
пример 3, обновить где:
tbl(con,"iris") %>% filter(Sepal.Width > 3) %>% update(a="foo")
# # Source: table<iris> [?? x 9]
# # Database: sqlite 3.22.0 []
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species x y z a
# <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <chr>
# 1 5.1 3.5 1.4 0.2 setosa 17.8 3.5 7 foo
# 2 4.9 3 1.4 0.2 setosa 14.7 3 6 setosasetosa
# 3 4.7 3.2 1.3 0.2 setosa 15.0 3.2 6.4 foo
пример 4: обновление по группам
tbl(con,"iris") %>%
group_by(Species, Petal.Width) %>%
update(new_col1 = sum(Sepal.Width,na.rm=TRUE), # using a R function
new_col2 = MAX(Sepal.Length)) # using native SQL
# # Source: SQL [?? x 11]
# # Database: sqlite 3.22.0 []
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species x y z a new_col1 new_col2
# <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
# 1 5.1 3.5 1.4 0.2 setosa 1 2 7 foo 6.5 5.1
# 2 4.9 3 1.4 0.2 setosa 1 2 6 setosasetosa 6.5 5.1
# 3 7 3.2 4.7 1.4 versicolor 1 2 6.4 foo 3.2 7
ГЛАВНЫЕ ПРИМЕЧАНИЯ
Код использует использует
dbplyr::translate_sql
так что мы можем использовать функции R или родные так же, как в старом добромmutate
звонки.update
можно использовать только после одногоfilter
позвонить или одинgroup_by
назовите ИЛИ ноль каждого, что угодно еще, и вы получите ошибку или неожиданные результатыgroup_by
реализация ОЧЕНЬ хакерская, поэтому нет места для определения столбцов на лету или группировки по операции, придерживайтесь основ.update
а такжеcreate
оба возвращаютсяtbl(con, table_name)
Это означает, что вы можете связать столько, сколькоcreate
или жеupdate
звонки, как вы хотите, с соответствующим количествомgroup_by
а такжеfilter
между. На самом деле все мои 4 примера могут быть связаны.Забить гвоздь,
create
не страдает от тех же ограничений, вы можете иметь столько жеdbplyr
весело, как хотелось бы, прежде чем звонить.Я не реализовал определение типа, поэтому мне нужно было
new_type
параметр, он перерабатывается вpaste
зовalter_queries
определение в моем коде, так что это может быть одно значение или вектор.
Одним из способов решения последнего является извлечение переменных из translations
переменная, найти их типы в dbGetQuery(con,"PRAGMA table_info(iris)")
, Тогда нам нужны правила приведения между всеми существующими типами, и мы настроены. Но поскольку разные СУБД имеют разные типы, я не могу придумать общий способ сделать это, и я не знаю, MonetDBLite
,