Замена более чем n последовательных значений в столбце Pandas DataFrame

Предположим, у меня есть следующий DataFrame df

df = pd.DataFrame({"a" : [1,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5], "b" : [3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,7,7], "c" : [4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,1,2,2,2,2,2,2,2,2,3,3]})

И я хочу заменить число 4, которое повторяется более 10 раз подряд, в любом столбце (может быть сотни столбцов), на 10 4 и остальные 5.

Так, например, 12 последовательных 4 будут заменены десятью 4 и двумя 5.

Как бы я достиг этого с Пандами?

Я хотел бы применить лямбду, но я не знаю, как просмотреть достаточно строк, и он должен был бы начинаться с конца и двигаться вперед, иначе это нарушит последовательность значений. Каждый поиск должен смотреть на предыдущие 10 строк, чтобы увидеть, все ли они равны 4, и если да, установить текущее значение равным 5.

Не знаю, как это сделать, хотя!

3 ответа

Решение

Ты можешь использовать:

#column a is changed for 2 groups of 4
df = pd.DataFrame({
"a" : [4,4,4,4,4,4,4,4,4,4,4,4,4,4,7,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5], 
"b" : [3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,7,7], 
"c" : [4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,1,2,2,2,2,2,2,2,2,3,3]})

Решение считает 4 последовательных с перезапуском, если NaN создано where а затем применить boolean mask к оригиналу df для замены 4 в 5 от mask:

a = df == 4
mask = a.cumsum()-a.cumsum().where(~a).ffill().fillna(0) > 10
df1 = df.mask(mask, 5)
print (df1)
    a  b  c
0   4  3  4
1   4  3  4
2   4  3  4
3   4  3  4
4   4  3  4
5   4  3  4
6   4  3  4
7   4  4  4
8   4  4  4
9   4  4  4
10  5  4  5
11  5  5  5
12  5  5  5
13  5  5  5
14  7  5  5
15  4  5  5
16  4  5  5
17  4  5  5
18  4  5  5
19  4  5  5
20  4  5  5
21  4  5  1
22  4  5  2
23  4  5  2
24  4  5  2
25  5  5  2
26  5  5  2
27  5  5  2
28  5  6  2
29  5  6  2
30  5  7  3
31  5  7  3

Для лучшей проверки значений возможно использование concat:

print (pd.concat([df, df1], axis=1, keys=['orig','new']))
   orig       new      
      a  b  c   a  b  c
0     4  3  4   4  3  4
1     4  3  4   4  3  4
2     4  3  4   4  3  4
3     4  3  4   4  3  4
4     4  3  4   4  3  4
5     4  3  4   4  3  4
6     4  3  4   4  3  4
7     4  4  4   4  4  4
8     4  4  4   4  4  4
9     4  4  4   4  4  4
10    4  4  4   5  4  5
11    4  5  4   5  5  5
12    4  5  4   5  5  5
13    4  5  4   5  5  5
14    7  5  4   7  5  5
15    4  5  4   4  5  5
16    4  5  4   4  5  5
17    4  5  4   4  5  5
18    4  5  5   4  5  5
19    4  5  5   4  5  5
20    4  5  5   4  5  5
21    4  5  1   4  5  1
22    4  5  2   4  5  2
23    4  5  2   4  5  2
24    4  5  2   4  5  2
25    4  5  2   5  5  2
26    4  5  2   5  5  2
27    4  5  2   5  5  2
28    4  6  2   5  6  2
29    5  6  2   5  6  2
30    5  7  3   5  7  3
31    5  7  3   5  7  3

Удалить все 4s, заполнить обратно с помощью 4s limit=10 в качестве аргумента и удалите оставшуюся NA с 5s. Я считаю этот метод более явным и более отражающим ваше намерение:

df[df!=4].fillna(4, limit=10).fillna(5)

При необходимости приведите df обратно к целым числам с astype(int) в конце концов, вторжение NA приведет к тому, что информационный кадр будет помещен в число с плавающей точкой.

Это должно сделать трюк:

import pandas as pd

df = pd.DataFrame({"a" : [1,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5], "b" : [3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,7,7], "c" : [4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,1,2,2,2,2,2,2,2,2,3,3]})

def replacer(l,target_val=4,replace_val=5,repeat_max=10):
    counter = 0
    new_l = []
    for e in l:
        if e == target_val: counter += 1
        else:
            counter = 0

        if counter > repeat_max:
            new_l.append(replace_val)
        else:
            new_l.append(e)

    return new_l

df1 = df.apply(replacer)

Выход:

    a  b  c
0   1  3  4
1   2  3  4
2   2  3  4
3   2  3  4
4   2  3  4
5   2  3  4
6   2  3  4
7   2  4  4
8   2  4  4
9   3  4  4
10  3  4  5
11  4  5  5
12  4  5  5
13  4  5  5
14  4  5  5
15  4  5  5
16  4  5  5
17  4  5  5
18  4  5  5
19  4  5  5
20  4  5  5
21  5  5  1
22  5  5  2
23  5  5  2
24  5  5  2
25  5  5  2
26  5  5  2
27  5  5  2
28  5  6  2
29  5  6  2
30  5  7  3
31  5  7  3
Другие вопросы по тегам