Как использовать OpenNLP для получения POS-тегов в R?

Вот код R:

library(NLP) 
library(openNLP)
tagPOS <-  function(x, ...) {
s <- as.String(x)
word_token_annotator <- Maxent_Word_Token_Annotator()
a2 <- Annotation(1L, "sentence", 1L, nchar(s))
a2 <- annotate(s, word_token_annotator, a2)
a3 <- annotate(s, Maxent_POS_Tag_Annotator(), a2)
a3w <- a3[a3$type == "word"]
POStags <- unlist(lapply(a3w$features, `[[`, "POS"))
POStagged <- paste(sprintf("%s/%s", s[a3w], POStags), collapse = " ")
list(POStagged = POStagged, POStags = POStags)}
str <- "this is a the first sentence."
tagged_str <-  tagPOS(str)

Выход:

tagged_str $ POStagged [1] "этот /DT является /VBZ a/DT первым /DT первым / предложение JJ /NN ./."

Теперь я хочу извлечь только NN-слово, то есть предложение из вышеприведенного предложения, и хочу сохранить его в переменной. Может ли кто-нибудь помочь мне с этим.

3 ответа

Решение

Могут быть более элегантные способы получить результат, но этот должен работать:

q <- strsplit(unlist(tagged_str[1]),'/NN')
q <- tail(strsplit(unlist(q[1])," ")[[1]],1)
#> q
#[1] "sentence"

Надеюсь это поможет.

Вот более общее решение, где вы можете описать тег Treebank, который вы хотите извлечь, используя регулярное выражение. В вашем случае, например, "NN" возвращает все типы существительных (например, NN, NNS, NNP, NNPS), в то время как "NN$" возвращает только NN.

Он работает с типом символов, поэтому если у вас есть текст в виде списка, вам нужно будет lapply() это как в примерах ниже.

txt <- c("This is a short tagging example, by John Doe.",
         "Too bad OpenNLP is so slow on large texts.")

extractPOS <- function(x, thisPOSregex) {
    x <- as.String(x)
    wordAnnotation <- annotate(x, list(Maxent_Sent_Token_Annotator(), Maxent_Word_Token_Annotator()))
    POSAnnotation <- annotate(x, Maxent_POS_Tag_Annotator(), wordAnnotation)
    POSwords <- subset(POSAnnotation, type == "word")
    tags <- sapply(POSwords$features, '[[', "POS")
    thisPOSindex <- grep(thisPOSregex, tags)
    tokenizedAndTagged <- sprintf("%s/%s", x[POSwords][thisPOSindex], tags[thisPOSindex])
    untokenizedAndTagged <- paste(tokenizedAndTagged, collapse = " ")
    untokenizedAndTagged
}

lapply(txt, extractPOS, "NN")
## [[1]]
## [1] "tagging/NN example/NN John/NNP Doe/NNP"
## 
## [[2]]
## [1] "OpenNLP/NNP texts/NNS"
lapply(txt, extractPOS, "NN$")
## [[1]]
## [1] "tagging/NN example/NN"
## 
## [[2]]
## [1] ""

Вот еще один ответ, который использует парсер и теггер spaCy из Python и пакет spacyr для его вызова.

Эта библиотека на несколько порядков быстрее и почти так же хороша, как модели Стэнфордского НЛП. В некоторых языках он все еще не завершен, но для английского - довольно хороший и многообещающий вариант.

Сначала вам нужно установить Python и установить spaCy и языковой модуль. Инструкции доступны на странице spaCy и здесь.

Затем:

txt <- c("This is a short tagging example, by John Doe.",
         "Too bad OpenNLP is so slow on large texts.")

require(spacyr)
## Loading required package: spacyr
spacy_initialize()
## Finding a python executable with spacy installed...
## spaCy (language model: en) is installed in /usr/local/bin/python
## successfully initialized (spaCy Version: 1.8.2, language model: en)

spacy_parse(txt, pos = TRUE, tag = TRUE)
##    doc_id sentence_id token_id   token   lemma   pos tag   entity
## 1   text1           1        1    This    this   DET  DT         
## 2   text1           1        2      is      be  VERB VBZ         
## 3   text1           1        3       a       a   DET  DT         
## 4   text1           1        4   short   short   ADJ  JJ         
## 5   text1           1        5 tagging tagging  NOUN  NN         
## 6   text1           1        6 example example  NOUN  NN         
## 7   text1           1        7       ,       , PUNCT   ,         
## 8   text1           1        8      by      by   ADP  IN         
## 9   text1           1        9    John    john PROPN NNP PERSON_B
## 10  text1           1       10     Doe     doe PROPN NNP PERSON_I
## 11  text1           1       11       .       . PUNCT   .         
## 12  text2           1        1     Too     too   ADV  RB         
## 13  text2           1        2     bad     bad   ADJ  JJ         
## 14  text2           1        3 OpenNLP opennlp PROPN NNP         
## 15  text2           1        4      is      be  VERB VBZ         
## 16  text2           1        5      so      so   ADV  RB         
## 17  text2           1        6    slow    slow   ADJ  JJ         
## 18  text2           1        7      on      on   ADP  IN         
## 19  text2           1        8   large   large   ADJ  JJ         
## 20  text2           1        9   texts    text  NOUN NNS         
## 21  text2           1       10       .       . PUNCT   . 
Другие вопросы по тегам