Прайм Факторинг, нет IO

Уважаемое сообщество Stackru,

Я пытаюсь написать код, который принимает "первоклассный" массив, каждый элемент которого первоначально описывает свой конечный мультипликативный продукт.

Код, который я пытаюсь написать, затем читает этот массив и превращает его в возведение в степень простых чисел, каждый индекс массива соответствует следующему простому числу, а каждый элемент индекса - степень, до которой он должен быть возведен. Я верю, что сделал это, но по какой-то причине не могу заставить работать свой IO. По какой-то причине, когда я переключил последнюю часть приращения внутренних циклов for на "i++" вместо правильного "j++", он отобразил бы цикл.

Соответствующий фрагмент

// Next stage: Take the array and turn in into the form described earlier

    for(unsigned int i = 0; i < sizeof(result); i++)
    {
            temppower = result[i];
            tempcounter = 1; // counter to control the loop.

            for(unsigned int j = 0; i < sizeof(result)-1; j++)
            {
                    if(result[j]+1 == temppower)
                    {
                            tempcounter++;
                            result[j+1] = 0;
                    }
            }
            result[i] = tempcounter;
    }

    for(unsigned int i = 0; i < sizeof(result); i++)
    {
            cout << result[i] << " ";
    }
    cout << endl;

Полный код

#include <iostream>
#include <cmath>
#include <climits>

using namespace std;

#include "fact.h"


/** eartosthenes constructs an up-to-n primes array of length len .
 * @param n                     call-by-value, top value for construction of primes.
 * @param &len          call-by-reference, the finished size of the array of primes.
 * @return int*         pointer to the first element of the array of primes.
 * Description:
 * The eartosthenes method of calculating primes are efficient for relative low primes (up to 10 million or so).
 * You can read about the method at http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
 * You can use wolfram-alpha https://www.wolframalpha.com/ and run Prime(start)...Prime(end) to get the primes
 * between start and end, e.g. Prime(1)...Prime(10) yield {2,3,5,7,11,13,17,19,23,29}.
 */
int * eratosthenes(int n, int & len){
        // computes all prime numbers up to n
        // returns the prime numbers as an array
        // the len parameter will be set to the length of the array
        bool *isPrime=new bool [n+1]; // construct [n+1] booleans
        len=0;
        // initialize every value from 1..n to true.
        for(int i=2; i<=n; i++){
                isPrime[i]=true;
        }
        // now we'll start at 2, and for every number of multiplicity 2.
        // e.g. 2*{1,2,3,4...n} is then set to false, as they are dividable by 2.
        // then we increment to 3, during the same.
        for(int i=2; i<=n; i++){
                if(isPrime[i]){
                        len++; // for each such iteration, we increase our desired length.
                        for(int j=2*i; j<=n; j+=i){
                                isPrime[j]=false; // set every(n) multiplicity of 2 to false.
                        }
                }
        }
        // having used erathosthenes formula, we now construct our array.
        int *result=new int[len];
        // now we need to return the primes-filled array.
        for(int i=0, j=2; i<len; i++){
                // if it's not a prime, then we spin the value up.
                while(!isPrime[j]) j++;
                // when the while-loop no longer hold, we'll have the iterations desired prime
                // we then set it, and the for-loop will continue to the next.
                result[i]=j++;
        }

        delete [] isPrime;      // always delete what you have allocated with new.
        // we say these allocation are on the heap or free store (c-syntax)
        return result;
}

#include "fact.h"

factrep new_factrep()
{
        factrep result;
        result = new int[len];

        return result;
}

factrep primfact(int n)
{
        factrep result;
        result = new int[len];

        int m; // still to factorize number
        int f; // current factor
        int index = 0; // index of factrep array
        int temppower = 0; // index for the power
        int tempcounter = 0; // counter to help the power determine its size

        m=n;
        f=2;

        // 0-initialize the result array
        for(unsigned int i = 0; i < sizeof(result); i++)
        {
                result[i] = 0;
        }

        // continue until nothing to factorize
        while(m != 1){
                // while the factor divides m, go on
                while(m % f == 0){
                        if(m!=1)
                        {
                                m=m/f;
                                result[index] = f;
                                index++;
                        }
                        else
                        {
                                result[index] = f;
                                break;
                        }
                }
                // increment factor
                f++;
        }


        // Next stage: Take the array and turn in into the form described within
        // the exercise handout,

        for(unsigned int i = 0; i < sizeof(result); i++)
        {
                temppower = result[i];
                tempcounter = 1; // counter to control the loop.

                for(unsigned int j = 0; i < sizeof(result)-1; j++)
                {
                        if(result[j]+1 == temppower)
                        {
                                tempcounter++;
                                result[j+1] = 0;
                        }
                }
                result[i] = tempcounter;
        }

        for(unsigned int i = 0; i < sizeof(result); i++)
        {
                cout << result[i] << " ";
        }
        cout << endl;


        return result;

}

factrep mult(factrep f1, factrep f2)
{
        factrep result;
        result = new int[len];

        for(int i = 0; i < len; i++)
        {
                result[i] = f1[i]+f2[i];
        }

        return result;
}

int getint(factrep f)
{
        int result = 0;
        //      int *temparray = new int[len];

        for(int i = 0; i < len; i++)
        {
                result *= pow(primes[i],f[i]);
        }

        return result;
}


// these are our global variables
// so in our header we called extern
// which basically tells c++, that we'll define them in another file.
int *primes;
int len;

int main(){
        // construct our primes array with maximum integer value
        primes=eratosthenes(sqrt(INT_MAX),len);
        // len now contains the length of the primes.

        // TEST VALUES
        // these are our test values.
        int n=60;
        int m=25;
        int l=640;

        // first check for non-negative content
        if ( n < 0 || m < 0 || l < 0){
                cout << "values must be positive (n > 0)" << endl;
                return 1;
        }

        // construct 3 prime-factorized arrays by the values (60,25,640)
        factrep fn=primfact(n);
        factrep fm=primfact(m);
        factrep fl=primfact(l);

        // Verify that these are indeed constructed with those values
        cout << getint(fn) << " " << getint(fm) << " " << getint(fl) << endl;

        // multiply:    fn = fn*fm, fm = fl*fl, fl = fn*fm
        //                              1500 = 60*25, 409600 = 640*640, 614400000 = 1500*409600
        fn=mult(fn,fm);
        fm=mult(fl,fl);
        fl=mult(fn,fm);

        // Verify that our functions work as expected by printing out their values now.
        cout << getint(fn) << " " << getint(fm) << " " << getint(fl) << endl;

        /* Expected output:
                60 25 640
                1500 409600 614400000
         */

        // and again, if we construct something on the heap/free-store we better delete it again
        // otherwise we might have a memory-leak on our hands.
        delete [] primes;
        delete [] fn;
        delete [] fm;
        delete [] fl;
        return 0;
}

Обновить

Мне было указано на ошибку: я поместил ссылку на переменную i в самый внутренний цикл вместо переменной j, которую я использовал. (Facepalm).

Тем временем эта реализация быстро помогла мне решить мою исходную проблему, которую я вставлю ниже на случай, если кто-то может столкнуться с подобной проблемой (primes [] - это массив простых чисел, по одному на элемент, созданный вне функций factrep)

for(unsigned int i = 0; i < sizeof(result); i++)
{
    temppower = primes[i];
    tempcounter = 0; // counter to control the loop.

    for(unsigned int j = 0; j < sizeof(result); j++)
    {
        if(result[j] == temppower)
        {
            tempcounter++;
        }
    }
    result[i] = tempcounter;
}

1 ответ

Решение

Строка 116: цикл бесконечен.

for(unsigned int j = 0; i < sizeof(result)-1; j++)

я никогда не изменяю внутренний цикл, где j увеличивается, что препятствует дальнейшему продвижению вашей программы и печати чего-либо.

Другие вопросы по тегам