Какой самый простой способ загрузить однополосные растры Landsat 8 из AWS и объединить их в один многоканальный RDD?
Я использую геотреллис для загрузки геотерических растров из Landsat 8, которые находятся на S3. Тем не менее, они хранятся для каждой группы. я могу использовать S3GeoTiff
класс для загрузки отдельных полос, например:
val options = S3GeoTiffRDD.Options(getS3Client = () => S3Client.ANONYMOUS)
val rddBlue = S3GeoTiffRDD.spatial("landsat-pds", "L8/139/045/LC81390452014295LGN00/LC81390452014295LGN00_B2.TIF", options)
val rddGreen = S3GeoTiffRDD.spatial("landsat-pds", "L8/139/045/LC81390452014295LGN00/LC81390452014295LGN00_B3.TIF", options)
val rddRed = S3GeoTiffRDD.spatial("landsat-pds", "L8/139/045/LC81390452014295LGN00/LC81390452014295LGN00_B4.TIF", options)
Но как мне объединить их для создания RGB-растра, например
val rddRGB = ??? // something like combineRDDs(rddRed, rddGreen, rddBlue)
1 ответ
Решение
Из СДР отдельных файлов без maxTileSize
При выборе опции вы получите RDD с полными изображениями (один элемент). Я бы рекомендовал установить параметр maxTileSize.
Есть перегрузка, которая позволяет вам поместить дополнительную информацию в ключ. Вот как я бы подошел к этой проблеме в целом.
Вот некоторый код, который делает то, что вы ищете, который использует эти опции:
import geotrellis.raster._
import geotrellis.spark._
import geotrellis.spark.io.s3._
import geotrellis.vector._
import org.apache.spark.SparkContext
import org.apache.spark.rdd._
import java.net.URI
import scala.math.BigDecimal.RoundingMode
implicit val sc: SparkContext =
geotrellis.spark.util.SparkUtils.createLocalSparkContext("local[*]", "landsat-example")
try {
val options =
S3GeoTiffRDD.Options(
getS3Client = () => S3Client.ANONYMOUS,
maxTileSize = Some(512),
numPartitions = Some(100)
)
type LandsatKey = (ProjectedExtent, URI, Int)
// For each RDD, we're going to include more information in the key, including:
// - the ProjectedExtent
// - the URI
// - the future band value
def uriToKey(bandIndex: Int): (URI, ProjectedExtent) => LandsatKey =
{ (uri, pe) =>
(pe, uri, bandIndex)
}
// Read an RDD of source tiles for each of the bands.
val redSourceTiles =
S3GeoTiffRDD[ProjectedExtent, LandsatKey, Tile](
"landsat-pds",
"L8/139/045/LC81390452014295LGN00/LC81390452014295LGN00_B2.TIF",
uriToKey(0),
options
)
val greenSourceTiles =
S3GeoTiffRDD[ProjectedExtent, LandsatKey, Tile](
"landsat-pds",
"L8/139/045/LC81390452014295LGN00/LC81390452014295LGN00_B3.TIF",
uriToKey(1),
options
)
val blueSourceTiles =
S3GeoTiffRDD[ProjectedExtent, LandsatKey, Tile](
"landsat-pds",
"L8/139/045/LC81390452014295LGN00/LC81390452014295LGN00_B4.TIF",
uriToKey(2),
options
)
// Union these together, rearrange the elements so that we'll be able to group by key,
// group them by key, and the rearrange again to produce multiband tiles.
val sourceTiles: RDD[(ProjectedExtent, MultibandTile)] = {
sc.union(redSourceTiles, greenSourceTiles, blueSourceTiles)
.map { case ((pe, uri, bandIndex), tile) =>
// Get the center of the tile, which we will join on
val (x, y) = (pe.extent.center.x, pe.extent.center.y)
// Round the center coordinates in case there's any floating point errors
val center =
(
BigDecimal(x).setScale(5, RoundingMode.HALF_UP).doubleValue(),
BigDecimal(y).setScale(5, RoundingMode.HALF_UP).doubleValue()
)
// Get the scene ID from the path
val sceneId = uri.getPath.split('/').reverse.drop(1).head
val newKey = (sceneId, center)
val newValue = (pe, bandIndex, tile)
(newKey, newValue)
}
.groupByKey()
.map { case (oldKey, groupedValues) =>
val projectedExtent = groupedValues.head._1
val bands = Array.ofDim[Tile](groupedValues.size)
for((_, bandIndex, tile) <- groupedValues) {
bands(bandIndex) = tile
}
(projectedExtent, MultibandTile(bands))
}
}
// From here, you could ingest the multiband layer.
// But for a simple test, we will rescale the bands and write them out to a single GeoTiff
import geotrellis.spark.tiling.FloatingLayoutScheme
import geotrellis.raster.io.geotiff.GeoTiff
val (_, metadata) = sourceTiles.collectMetadata[SpatialKey](FloatingLayoutScheme(512))
val tiles = sourceTiles.tileToLayout[SpatialKey](metadata)
val raster =
ContextRDD(tiles, metadata)
.withContext { rdd =>
rdd.mapValues { tile =>
// Magic numbers! These were created by fiddling around with
// numbers until some example landsat images looked good enough
// to put on a map for some other project.
val (min, max) = (4000, 15176)
def clamp(z: Int) = {
if(isData(z)) { if(z > max) { max } else if(z < min) { min } else { z } }
else { z }
}
val red = tile.band(0).map(clamp _).delayedConversion(ByteCellType).normalize(min, max, 0, 255)
val green = tile.band(1).map(clamp _).delayedConversion(ByteCellType).normalize(min, max, 0, 255)
val blue = tile.band(2).map(clamp _).delayedConversion(ByteCellType).normalize(min, max, 0, 255)
MultibandTile(red, green, blue)
}
}
.stitch
GeoTiff(raster, metadata.crs).write("/tmp/landsat-test.tif")
} finally {
sc.stop()
}