Построение результата kde в ggtern

Я использую ggtern для построения большого набора данных в виде третичного графика (см. Пример ниже).

До определенного размера данных все было идеально, так как я использовал geom_density_tern(). Поскольку я хочу визуализировать гораздо более сложный набор данных, загружая все это, и рендеринг с помощью ggplot становится невозможным (ограничение со стороны памяти). Я подумал, что, возможно, может быть обходной путь, вменяя результат матрицы kde2d, вычисленной отдельно. И вот где я застрял. Хотелось бы узнать, можно ли это как-нибудь сделать в ggtern?

В любом случае я добавляю минимальный случай структуры данных и построения графиков, которые я использую в данный момент.

require(ggplot2)
require(ggtern) 

set.seed(1) 

mydata <- data.frame(
        x = runif(100, min = 0.25, max = 0.5),
        y = runif(100, min = 0.1, max = 0.4),
        z = runif(100, min = 0.5, max = 0.7))   

plot <- ggtern() + 
        theme_bw() +
        theme_hidetitles() +
        geom_density_tern(data = mydata,
            aes(x = x, y = y, z = z, alpha = ..level.. ), 
            size = 0.1, linetype = "solid", fill = "blue")+
        geom_point(data = mydata, 
            aes(x = x, y = y, z = z), alpha = 0.8, size = 1)
plot

Эти дополнительные линии воспроизводят график плотности в тройной координационной системе:

library(MASS)
dataTern = transform_tern_to_cart(mydata$x,mydata$y,mydata$z)
dataTernDensity <- kde2d(x=dataTern$x, y=dataTern$y, lims = c(range(0,1), range(0,1)), n = 400) 

image(dataTernDensity$x, dataTernDensity$y, dataTernDensity$z)
points(dataTern$x, dataTern$y, pch = 20, cex = 0.1)
segments(x0 = 0, y0 = 0, x1 = 0.5, y1 = 1, col= "white")
segments(x0 = 0, y0 = 0, x1 = 1, y1 = 0, col= "white")
segments(x0 = 0.5, y0 = 1, x1 = 1, y1 = 0, col= "white")

И получить этот график:

Заранее благодарю за любую помощь!

1 ответ

Решение

Мы можем решить эту проблему, используя код, который обычно используется за кулисами в Stat. Только что выпустив ggtern 2.0.1опубликованный на CRAN пару дней назад после полного переписывания пакета для совместимости с ggplot2 2.0.0Я знаком с подходом, который может удовлетворить ваши потребности. Кстати, для вашего интереса, краткое описание новых функций в ggtern 2.0.X можно найти здесь:

Ниже, пожалуйста, найдите решение и рабочий код для вашей проблемы, который является оценкой плотности, рассчитанной в изометрическом логарифмическом пространстве.

решение

#Required Libraries
library(ggtern)
library(ggplot2)
library(compositions)
library(MASS)
library(scales)

set.seed(1) #For Reproduceability
mydata <- data.frame(
  x = runif(100, min = 0.25, max = 0.5),
  y = runif(100, min = 0.1, max = 0.4),
  z = runif(100, min = 0.5, max = 0.7)) 

#VARIABLES
nlevels  = 7
npoints  = 200
expand   = 0.5

#Prepare the data, put on isometric logratio basis
df     = data.frame(acomp(mydata)); colnames(df) = colnames(mydata)
data   = data.frame(ilr(df)); colnames(data) = c('x','y')

#Prepare the Density Estimate Data
h.est  = c(MASS::bandwidth.nrd(data$x), MASS::bandwidth.nrd(data$y))
lims   = c(expand_range(range(data$x),expand),expand_range(range(data$y),expand))
dens   = MASS::kde2d(data$x,data$y,h=h.est,n=npoints,lims=lims)

#-------------------------------------------------------------
#<<<<< Presumably OP has data at this point, 
#      and so the following should achieve solution
#-------------------------------------------------------------

#Generate the contours via ggplot2's non-exported function
lines  = ggplot2:::contour_lines(data.frame(expand.grid(x = dens$x, y = dens$y),
                                            z=as.vector(dens$z),group=1),
                                 breaks=pretty(dens$z,n=nlevels))

#Transform back to ternary space
lines[,names(mydata)] = data.frame(ilrInv(lines[,names(data)]))

#Render the plot
ggtern(data=lines,aes(x,y,z)) +
  theme_dark() + 
  theme_legend_position('topleft') + 
  geom_polygon(aes(group=group,fill=level),colour='grey50') +
  scale_fill_gradient(low='green',high='red') + 
  labs(fill  = "Density",
       title = "Example Manual Contours from Density Estimate Data")
Другие вопросы по тегам