Билинейная интерполяция для углов
У меня есть двумерный массив данных о направлении. Мне нужно интерполировать по сетке с более высоким разрешением, однако готовые функции, такие как scipy interp2d и т. Д., Не учитывают разрыв между 0 и 360.
У меня есть код для этого для одной сетки из 4 точек (спасибо, как выполнить билинейную интерполяцию в Python и Rotation Interpolation), однако я бы хотел, чтобы он сразу принимал большие наборы данных - точно так же, как функция interp2d. Как я могу включить это в приведенный ниже код таким образом, чтобы не просто зациклить все данные?
Спасибо!
def shortest_angle(beg,end,amount):
shortest_angle=((((end - beg) % 360) + 540) % 360) - 180
return shortest_angle*amount
def bilinear_interpolation_rotation(x, y, points):
'''Interpolate (x,y) from values associated with four points.
The four points are a list of four triplets: (x, y, value).
The four points can be in any order. They should form a rectangle.
'''
points = sorted(points) # order points by x, then by y
(x1, y1, q11), (_x1, y2, q12), (x2, _y1, q21), (_x2, _y2, q22) = points
if x1 != _x1 or x2 != _x2 or y1 != _y1 or y2 != _y2:
raise ValueError('points do not form a rectangle')
if not x1 <= x <= x2 or not y1 <= y <= y2:
raise ValueError('(x, y) not within the rectangle')
# interpolate over the x value at each y point
fxy1 = q11 + shortest_angle(q11,q21,((x-x1)/(x2-x1)))
fxy2 = q12 + shortest_angle(q12,q22,((x-x1)/(x2-x1)))
# interpolate over the y values
fxy = fxy1 + shortest_angle(fxy1,fxy2,((y-y1)/(y2-y1)))
return fxy
1 ответ
Я собираюсь повторно использовать некоторые личные Point
а также Point3D
упрощенные классы для этого примера:
Point
class Point:
#Constructors
def __init__(self, x, y):
self.x = x
self.y = y
# Properties
@property
def x(self):
return self._x
@x.setter
def x(self, value):
self._x = float(value)
@property
def y(self):
return self._y
@y.setter
def y(self, value):
self._y = float(value)
# Printing magic methods
def __repr__(self):
return "({p.x},{p.y})".format(p=self)
# Comparison magic methods
def __is_compatible(self, other):
return hasattr(other, 'x') and hasattr(other, 'y')
def __eq__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x == other.x) and (self.y == other.y)
def __ne__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x != other.x) or (self.y != other.y)
def __lt__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y) < (other.x, other.y)
def __le__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y) <= (other.x, other.y)
def __gt__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y) > (other.x, other.y)
def __ge__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y) >= (other.x, other.y)
Он представляет собой 2D точку. У него есть простой конструктор, x
а также y
свойства, которые гарантируют, что они всегда хранят float
s, магические методы для представления строк как (x,y)
и сравнение, чтобы сделать их сортируемыми (сортировка по x
затем y
). Мой исходный класс имеет дополнительные функции, такие как магические методы сложения и вычитания (векторное поведение), но они не нужны для этого примера.
Point3D
class Point3D(Point):
# Constructors
def __init__(self, x, y, z):
super().__init__(x, y)
self.z = z
@classmethod
def from2D(cls, p, z):
return cls(p.x, p.y, z)
# Properties
@property
def z(self):
return self._z
@z.setter
def z(self, value):
self._z = (value + 180.0) % 360 - 180
# Printing magic methods
def __repr__(self):
return "({p.x},{p.y},{p.z})".format(p=self)
# Comparison magic methods
def __is_compatible(self, other):
return hasattr(other, 'x') and hasattr(other, 'y') and hasattr(other, 'z')
def __eq__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x == other.x) and (self.y == other.y) and (self.z == other.z)
def __ne__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x != other.x) or (self.y != other.y) or (self.z != other.z)
def __lt__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y, self.z) < (other.x, other.y, other.z)
def __le__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y, self.z) <= (other.x, other.y, other.z)
def __gt__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y, self.z) > (other.x, other.y, other.z)
def __ge__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y, self.z) >= (other.x, other.y, other.z)
Такой же как Point
но для 3D очков. Он также включает дополнительный метод конструктора класса, который принимает Point
и его значение z в качестве аргументов.
Линейная интерполяция
def linear_interpolation(x, *points, extrapolate=False):
# Check there are a minimum of two points
if len(points) < 2:
raise ValueError("Not enought points given for interpolation.")
# Sort the points
points = sorted(points)
# Check that x is the valid interpolation interval
if not extrapolate and (x < points[0].x or x > points[-1].x):
raise ValueError("{} is not in the interpolation interval.".format(x))
# Determine which are the two surrounding interpolation points
if x < points[0].x:
i = 0
elif x > points[-1].x:
i = len(points)-2
else:
i = 0
while points[i+1].x < x:
i += 1
p1, p2 = points[i:i+2]
# Interpolate
return Point(x, p1.y + (p2.y-p1.y) * (x-p1.x) / (p2.x-p1.x))
Он принимает первый аргумент позиции, который определит x, значение y которого мы хотим вычислить, и бесконечное количество Point
случаи, откуда мы хотим интерполировать. Ключевой аргумент (extrapolate
) позволяет включить экстраполяцию. Point
экземпляр возвращается с запрошенным значением x и вычисленными значениями y.
Билинейная интерполяция
Я предлагаю две альтернативы, обе они имеют аналогичную сигнатуру с предыдущей функцией интерполяции. Point
чье значение z мы хотим вычислить, аргумент ключевого слова (extrapolate
), который включает экстраполяцию и возвращает Point3D
экземпляр с запрошенными и рассчитанными данными. Разница между этими двумя подходами заключается в том, как предоставляются значения, которые будут использоваться для интерполяции:
Подход 1
Первый подход требует двухуровневой вложенности dict
, Клавиши первого уровня представляют значения x, второй уровень - значения y, а второй уровень - значения z.
def bilinear_interpolation(p, points, extrapolate=False):
x_values = sorted(points.keys())
# Check there are a minimum of two x values
if len(x_values) < 2:
raise ValueError("Not enought points given for interpolation.")
y_values = set()
for value in points.values():
y_values.update(value.keys())
y_values = sorted(y_values)
# Check there are a minimum of two y values
if len(y_values) < 2:
raise ValueError("Not enought points given for interpolation.")
# Check that p is in the valid interval
if not extrapolate and (p.x < x_values[0] or p.x > x_values[-1] or p.y < y_values[0] or p.y > y_values[-1]):
raise ValueError("{} is not in the interpolation interval.".format(p))
# Determine which are the four surrounding interpolation points
if p.x < x_values[0]:
i = 0
elif p.x > x_values[-1]:
i = len(x_values) - 2
else:
i = 0
while x_values[i+1] < p.x:
i += 1
if p.y < y_values[0]:
j = 0
elif p.y > y_values[-1]:
j = len(y_values) - 2
else:
j = 0
while y_values[j+1] < p.y:
j += 1
surroundings = [
Point(x_values[i ], y_values[j ]),
Point(x_values[i ], y_values[j+1]),
Point(x_values[i+1], y_values[j ]),
Point(x_values[i+1], y_values[j+1]),
]
for i, surrounding in enumerate(surroundings):
try:
surroundings[i] = Point3D.from2D(surrounding, points[surrounding.x][surrounding.y])
except KeyError:
raise ValueError("{} is missing in the interpolation grid.".format(surrounding))
p1, p2, p3, p4 = surroundings
# Interpolate
p12 = Point3D(p1.x, p.y, linear_interpolation(p.y, Point(p1.y,p1.z), Point(p2.y,p2.z), extrapolate=True).y)
p34 = Point3D(p3.x, p.y, linear_interpolation(p.y, Point(p3.y,p3.z), Point(p4.y,p4.z), extrapolate=True).y)
return Point3D(p.x, p12.y, linear_interpolation(p.x, Point(p12.x,p12.z), Point(p34.x,p34.z), extrapolate=True).y)
print(bilinear_interpolation(Point(2,3), {1: {2: 5, 4: 6}, 3: {2: 3, 4: 9}}))
Подход 2
Второй подход занимает бесконечное число Point3D
экземпляров.
def bilinear_interpolation(p, *points, extrapolate=False):
# Check there are a minimum of four points
if len(points) < 4:
raise ValueError("Not enought points given for interpolation.")
# Sort the points into a grid
x_values = set()
y_values = set()
for point in sorted(points):
x_values.add(point.x)
y_values.add(point.y)
x_values = sorted(x_values)
y_values = sorted(y_values)
# Check that p is in the valid interval
if not extrapolate and (p.x < x_values[0] or p.x > x_values[-1] or p.y < y_values[0] or p.y > y_values[-1]):
raise ValueError("{} is not in the interpolation interval.".format(p))
# Determine which are the four surrounding interpolation points
if p.x < x_values[0]:
i = 0
elif p.x > x_values[-1]:
i = len(x_values) - 2
else:
i = 0
while x_values[i+1] < p.x:
i += 1
if p.y < y_values[0]:
j = 0
elif p.y > y_values[-1]:
j = len(y_values) - 2
else:
j = 0
while y_values[j+1] < p.y:
j += 1
surroundings = [
Point(x_values[i ], y_values[j ]),
Point(x_values[i ], y_values[j+1]),
Point(x_values[i+1], y_values[j ]),
Point(x_values[i+1], y_values[j+1]),
]
for point in points:
for i, surrounding in enumerate(surroundings):
if point.x == surrounding.x and point.y == surrounding.y:
surroundings[i] = point
for surrounding in surroundings:
if not isinstance(surrounding, Point3D):
raise ValueError("{} is missing in the interpolation grid.".format(surrounding))
p1, p2, p3, p4 = surroundings
# Interpolate
p12 = Point3D(p1.x, p.y, linear_interpolation(p.y, Point(p1.y,p1.z), Point(p2.y,p2.z), extrapolate=True).y)
p34 = Point3D(p3.x, p.y, linear_interpolation(p.y, Point(p3.y,p3.z), Point(p4.y,p4.z), extrapolate=True).y)
return Point3D(p.x, p12.y, linear_interpolation(p.x, Point(p12.x,p12.z), Point(p34.x,p34.z), extrapolate=True).y)
print(bilinear_interpolation(Point(2,3), Point3D(3,2,3), Point3D(1,4,6), Point3D(3,4,9), Point3D(1,2,5)))
Из обоих подходов видно, что они используют ранее определенные linear_interpoaltion
функция, и что они всегда установлены extrapolation
в True
как они уже подняли исключение, если это было False
и запрошенная точка была за пределами указанного интервала.